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ABSTRACT

Retrieving music information from brain activity is a chal-

lenging and still largely unexplored research problem. In this

paper we investigate the possibility to reconstruct perceived and

imagined musical stimuli from electroencephalography (EEG)

recordings based on two datasets. One dataset contains multi-

channel EEG of subjects listening to and imagining rhythmical

patterns presented both as sine wave tones and short looped

spoken utterances. These utterances leverage the well-known

speech-to-song illusory transformation which results in very

catchy and easy to reproduce motifs. A second dataset provides

EEG recordings for the perception of 10 full length songs. Us-

ing a multi-view deep generative model we demonstrate the fea-

sibility of learning a shared latent representation of brain activ-

ity and auditory concepts, such as rhythmical motifs appearing

across different instrumentations. Introspection of the model

trained on the rhythm dataset reveals disentangled rhythmical

and timbral features within and across subjects. The model al-

lows continuous interpolation between representations of differ-

ent observed variants of the presented stimuli. By decoding the

learned embeddings we were able to reconstruct both perceived

and imagined music. Stimulus complexity and the choice of

training data shows strong effect on the reconstruction quality.

1. INTRODUCTION

Studying the human brain‘s response to music gained a lot

of attention in recent years. Many studies in the field rely on

electroencephalography (EEG) recordings, as they provide

better temporal resolution than other techniques, such as func-

tional magnetic resonance imaging (fMRI). Previous research

suggests that a listener’s brain response is modulated in correla-

tion to the perceived auditory stimuli on many different levels

and that these modulations can be detected within EEG. One

of these effects is the correlation between the frequency and

magnitude of neural oscillation patterns, which are modulated

by accents and rhythmical patterns in music [3,20,21]. Other

studies indicate that tracking auditory attention towards a

specific sound source in EEG recordings is possible [1,30].

EEG data has been used to research event-related potentials

(ERPs) as a repeatable and distinguishable response to aspects
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of perceived music. The characteristic brain activity patterns

underlying ERPs can be specific, for example, to the structure

of musical events, such as note onsets or rhythm and pitch

patterns [19, 24]. Other ERPs are related to the timbre of

sound and can be modulated even by differences within timbre,

such as changes in harmonics [17, 25]. While many ERP

components show similar activation across subjects, studies

suggest that some are caused by more fine-grained aspects

of music, especially within trained musicians [25]. These

brain activity patterns extend over the temporal, spatial and

frequency domain of the EEG signal.

Motivated by the existence of such features, EEG recordings

have been used in several music information retrieval studies

based on EEG, such as perceived rhythm or tempo classifi-

cation [28]. First attempts have been made to reconstruct the

loudness envelope of perceived and imagined musical stimuli,

but with unsatisfying accuracy [22,26,27]. Some of these stud-

ies use deep neural networks for classification and regression

and the achieved results hint at their usefulness in exploring

the complex brain signal. However, the power of employed

networks is restricted by size and their general application ex-

clusively to EEG signal denoising or classification. Outside

from research on music cognition, recent studies have shown

the possibility to use generative models to reconstruct perceived

visual stimuli both from fMRI and EEG recordings [4, 10].

Generative models learn to encode a meaningful internal latent

representation of a given signal. In addition, they contain a de-

coding part to either reconstruct the input or another signal that

is extractable from the internal latent variable. A recent study

has demonstrated the possibility to learn such shared latent em-

beddings for EEG recordings of music perception and use them

as a continuous semantic space representation of the audio [23].

This suggests that a more elaborate generative model could

learn a shared encoding of music and brain signals, leading

to a conjoint representation of those auditory concepts that are

perceived and processed by the brain. As previous research sug-

gests, these concepts span a spectrum of complexity, starting

on the level of the subject-specific manifestation and meaning

of specific ERP responses to high-level semantic or emotional

meaning of music. Therefore, they provide the necessary

information to reconstruct the musical stimuli as they are

perceived or imagined. Based on this motivation, we propose

a generative multi-view model that makes use of deep neural

networks to encode and decode spatio-temporal brain signal

using a latent embedding. This embedding is simultaneously

used to reconstruct and classify music presented and imagined

during EEG recording. In this paper we introduce our view
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on auditory concepts and the suggested method. We describe

two datasets of EEG recordings during music perception

and imagination that are used for training and evaluation.

Furthermore, we perform model introspection to demonstrate

the possibility of interpolating between musically meaningful

points within the learned latent space. Finally, we suggest

possible ways to extend the framework to include multi-modal

processing and learning high level musical concepts.

2. AUDITORY CONCEPTS

Our approach relies on three assumptions for auditory concepts:

1. Coupled auditory and conceptual processing

2. Shared neural representation of music perception and

imagination

3. Hierarchical structure of music

Firstly, we assume that there is a tight coupling between au-

ditory and conceptual processing [12]. Several studies suggest

that auditory stimuli are processed in a conceptual system that

is shared with other modalities, such as visual perception [31].

Furthermore, music processing is based on concepts inherent

to the auditory stimuli as well as on external factors, such as

visual and social environment or musical training [7]. Secondly,

following the ideas of embodied cognition, we assume that the

human conceptual system is essentially grounded in perception

and that through its interplay with action and cognitive states,

music perception at least partially shares conceptual and

neural representation with musical imagination [11]. Previous

research suggests that auditory concept formation can be

traced back to specific ERPs and that the magnitude of some

ERP component can be controlled by the presence of an

auditory concept in the listeners mind [29]. Thirdly, we follow

the idea that music is essentially hierarchical in structure and

that auditory concepts equivalently exist on a spectrum of ab-

straction levels, reflecting and augmenting this structure. They

can range from concepts related to single sounds or rhythm

to concepts within the emotional or aesthetic processing of

music. Together with the previous two assumptions this means

that basic elements of perceptual musical processing, such as

ERPs related to note onset expectancy, are influenced by their

integration into conceptual processing. Music cognition and

concept formation can be highly subjective, stimulus-driven

as well as context-dependent, e.g. on visual and social aspects

of a performance [18]. For these reasons, we hypothesize that

a simultaneous retrieval of auditory concepts from multiple

sources aids the reconstruction of the processed stimuli while

further deepening our understanding of music cognition.

3. RELATED WORK

Various approaches exist to learning a shared embedding from

two or more datasets. One method is Canonical Correlation

Analysis (CCA) [8]. CCA is non-probabilistic and enables the

extraction of linear components to optimize the correlations be-

tween two multivariate datasets. CCA in combination with con-

volutional neural networks has recently been used by Raposo

et al. to learn a shared semantic space between audio and EEG

signal [23]. Based on CCA, Fujiwara et al. have introduced

Bayesian Canonical Correlation Analysis (BCCA), a probabilis-

tic interpretation of CCA [5]. However, BCCA still contains

linear observation models, while EEG data is very complex

and noisy and requires non-linear computation. To surpass this

limitation, Deep Canonically Correlated Autoencoders (DC-

CAEs) were proposed by Wang et al. [32]. DCCAEs maximize

the correlation between the latent embeddings of two separate

autoencoders, but do not enable cross-reconstruction between

their inputs. While this problem is solved by correlational

neural networks (CorrNets), the unregularized latent embed-

dings of both DCCAE and CorrNet are prone to overfitting,

especially in combination with the representational power of

non-linear observation models [2]. For these reasons, we follow

the suggestion of Wang et al. to use a deep, generative and prob-

abilistic latent variable interpretation of CCA called Deep Varia-

tional Canonical Correlation Analysis (VCCA) [32]. A similar

approach tailored specifically to a missing view reconstruction

for visual stimuli in fMRI data has successfully been demon-

strated recently [4]. Here, we show that we can derive a general

multi-view generative model capable of joint EEG and stimulus

processing that allows multi-modal learning from physiological

data as well as directly from the stimuli. To our knowledge, no

comparable framework for EEG-based audio stimulus recon-

struction or for shared auditory concept learning exists.

4. DATASETS AND PREPROCESSING

We use two datasets, the OpenMIIR speech and the Naturalistic

Music EEG Dataset - Tempo (NMED-T) dataset. They are

similar in experimental setup but differ in focus and size.

4.1 OpenMIIR speech dataset

One dataset contains EEG of subjects listening to and

imagining four rhythmical patterns presented both as sine

wave tones and short looped spoken utterances. It stems from

the Open Music Imagery Information Retrieval (OpenMIIR)

initiative [28] and features four different catchy and easy to

reproduce motifs superimposed on a constant metronome

click. We refer to it as ”OpenMIIR speech dataset”. The trials

are annotated for containing either speech or sine wave tones

and can be used to train and evaluate model performance for

the perception and imagination of the same rhythmical trials

within two timbres. The metronome clicks serve as cues that

are present during perception as well as imagination. The main

intention behind this dataset is to reduce stimulus complexity

as far as possible while still retaining enough musical structure

for building and evaluating models. This dataset contains data

from seven subjects with normal hearing and no history of

brain injury. It was recorded with 64 EEG channels, horizontal

and vertical Electrooculography (EOG) channels sampled at

512 Hz. All perception stimuli have equal tempo and duration

of 12 s. Presentation was done in randomized order after

2 s of metronome clicks. They were immediately followed

by another 12 s of metronome cues. Participants were asked

to imagine the perceived stimulus directly after presentation

using these subsequent cue clicks. The concatenated
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perception-imagination trials sum up to 26 s of recorded EEG

data for each trial. As each trial was presented 6 times, this

sums up to a total of 96 presented trials. In total, the dataset

contains about 2500 s (42 min) of EEG recordings per subject.

We performed common-practice preprocessing steps using the

MNE-python toolbox by Gramfort et al. including manual bad

channel removal and interpolation after visual inspection [6].

All EEG data was bandpass filtered between 0.5 and 50 Hz.

Extended Infomax Independent Component Analysis (ICA)

was used to remove EEG artifacts using the EOG signal.

4.2 NMED-T dataset

The NMED-T dataset provides EEG recordings for the

perception of 10 naturalistic full length songs. The songs are

in Western musical tradition, have durations between 4:30 and

5:00 min in length and contain vocals. They are real-world

musical works with pronounced rhythmical properties. 125

channel EEG at 1 kHz sampling rate was recorded for all of

the 20 subjects with normal hearing and no history of brain

injury. We used the preprocessed version of the dataset, which

features EEG down-sampled to 125 Hz and bandpass filtered

between 0.3 and 50 Hz. Ocular and cardiac artifacts were

removed using the additional EOG channels with ICA after

manual bad channel removal. A more detailed description of

the preprocessed dataset can be found in [15].

Subjects in both experiments were not required to have

musical training, nor did they execute a particular task during

listening or imagination. All EEG channels were normalized

to zero mean and range [-1, 1]. For training, EEG data was

split into excerpts of 1 s length, resulting in 512 samples

(OpenMIIR) and 125 samples (NMED-T) length.

We computed Mel spectrograms of audio targets at full

sample-rate of 44100 Hz using the librosa library [16] with

64 frequency bands between 0 and 2000 Hz, FFT window size

of 2048 and hop length of 1024. Furthermore, we generated

loudness envelopes for each stimulus using Hilbert transform

of the scipy library at the full sample rate [9]. We then

down-sampled the Mel spectrograms and loudness envelopes

to the sample rates of the EEG (512 Hz for OpenMIIR and 125

Hz for NMED-T) before splitting into excerpts of 1 s length.

5. LEARNING SHARED REPRESENTATIONS

OF AUDIO AND BRAIN SIGNAL

We propose an adaptation of VCCA as proposed by Wang

et al. [32] to perform multi-view learning on audio and EEG

signal by defining EEG and audio to be two views that can

be generated independently from a shared latent embedding z:

p(audio,eeg,z)=p(z)p(audio|z)p(eeg|z). (1)

As we are essentially interested in the auditory informa-

tion within EEG signal, we formulate a default model with a

single encoder, which processes EEG. Here, z is a learnable

space of auditory concepts which are contained implicitly both

in the audio and the EEG signal and which generate signifi-

cant parts of both views. Following the VCCA principle, we

project both audio and EEG signal into the shared space z.

By declaring the prior p(z), p(audio | eeg), and p(eeg | z)

to be Gaussian, we ensure that the projections E[z | audio]
and E[z |eeg] of the maximum likelihood solution are in the

same space as the projections through CCA. As we deal with

the reconstruction of complex EEG data, we parametrize the

mean of pΘ(eeg |z) with deep neural networks (DNNs) and

apply the same procedure for the mean of pΘ(audio |z). The

approximate posterior qφ(z |eeg) is optimized by a third DNN.

Training the VCCA model is done in analogy to Variational Au-

toencoders (VAEs) with variational inference by sampling from

qφ(z |eeg). Optimizing the lower bound of the log likelihood

L(eeg,audio;θ,φ) with stochastic backpropagation is done by

optimizing the reconstruction loss of audio and EEG decoder

and the Kullback-Leibler (KL) divergence between the learned

qφ(z |eeg) and p(z) using the reparameterization trick [14].

5.1 Multimodal data and additional views

This model can be extended to arbitrary amount of decoders

to reconstruct multiple views, as long as they are dependent

mainly of a shared latent variable. Here, we use several

decoders to reconstruct different aspects of the audio signal:

Mel spectrograms of the audio stimuli, their loudness envelope

as well as an additional decoder to classify the trial types.

Based on our retrieval intention, here we focus on the learned

embedding and the reconstructed Mel spectrograms. We

use the remaining decoders to enhance the training quality.

Similarly, we can add additional encoders, if they represent

data based on the latent variable, by making use of additional

private latent variables introduced with the VCCA model.

They store only the view-specific aspects of additional input,

e.g. from other biological modalities, such as fMRI, audio or

EEG signal during imagination. Figure 1 shows an example

of the modified VCCA architecture with one EEG decoder

and two audio decoders. Here, we test the model with a single

EEG encoder and multiple decoders.

Figure 1. VCCA architecture for shared auditory concept and

EEG representation learning. Latent variables parametrized by

optional private encoders are indicated with dashed lines.
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5.2 EEG encoder architectures

Both NMED-T and OpenMIIR speech EEG encoders featured

4 convolutional layers with filter numbers linearly ascending

from 64 to 512 per layer. Convolution was performed on two

dimensional inputs. Each column of the input represented the

same linear concatenation of EEG channels for a single sample

within the inputs of 1 s length. This resulted in inputs of size

512*64 for the OpenMIIR speech and 125*125 channels for

the NMED-T inputs. The kernel size was set to [2x2] for all

layers. Here and for all further kernel dimensions, we define

the first index to be within the channel domain (or frequency

for spectrograms) and the second within the temporal domain.

Each convolutional layer was followed by 30 % dropout.

5.3 EEG and audio decoder architectures

We used similar EEG decoder architectures for both datasets.

The OpenMIIR speech EEG decoder featured 6 hidden decon-

volution layers with three layers of 16 and another three layers

of 32 filters. The kernel size was set uniformly to [2x16] with

stride 2 except for a [2x1] kernel in the third layer with stride

1. A final dense output layer consisted of 512*64 units. The

decoder for the NMED-T dataset followed the same deconvo-

lution architecture, except for kernels with dimension of [4x16]

and [4x1] instead of [2x16] and [2x1]. A final dense layer con-

sisted of 125*125 units. Both OpenMIIR speech and NMED-T

decoders for Mel spectrograms consisted of four layers: Two

deconvolution layers of 32 filters and two layers with 64 filters.

As the length of Mel spectrograms mirrors those of the EEG

excerpts, but in combination with a frequency resolution of

64 bins, the final dense layer featured 512*64 and 125*64

units respectively. The kernel dimensions were set to [4x8]

uniformly, except for the fourth deconvolution layer of the

OpenMIIR speech decoder, with a [2x8] kernel. The decoder

for loudness envelope reconstruction consisted of a bidirec-

tional LSTM layer with 128 hidden units, followed by a dense

layer of size equal to the length of the audio excerpt. Finally,

the decoder used for classification of the OpenMIIR speech

dataset consisted of two hidden dense layers with 32 filters and

a dense output layer of 1 unit. All internal units used Rectified

Linear Unit (ReLU) activations, all output units had sigmoid

activation. The size of the latent embedding was 128 units.

5.4 VCCA training and prediction

The extended VCCA model was trained both intra-subject and

cross-subject in an end-to-end fashion purely on the perception

trials using Adam optimization with a constant learning rate of

0.0001 [13]. For both datasets we used 60 % of available per-

ception trials for training and another 20 % for validation. The

remaining 20 % and the imagination trials were used for testing.

All trials were shuffled randomly before training. For tests on

imagination data, we evaluated both imagination trials whose

corresponding perception trials were included in the training as

well as entirely unknown trials. All models were trained up to

saturation of the Mel spectrogram reconstruction loss, between

1000-2000 epochs. Reconstruction loss was computed as the

mean squared error between reconstructions and targets.

5.5 Introspection

After training we inspected the learned latent space by linearly

interpolating between multiple existing EEG inputs extracted

either from the training or testing dataset. This way, we

received embeddings for the given inputs as well as a fixed

number of embeddings that connect them in the learned

projection space. We then used the model to reconstruct the

Mel spectrogram and EEG signal for the embeddings.

6. QUALITATIVE ANALYSIS

OF MUSICAL STIMULUS RECONSTRUCTION

6.1 Perceived stimulus reconstruction

We were able to use the modified VCCA model to reconstruct

the Mel spectrograms of perceived audio within both datasets

at various levels of accuracy. Figure 2 shows exemplary re-

constructions of speech and sine wave tone patterns for intra-

subject training and testing on both trial types of the OpenMIIR

speech dataset. The reconstructions are characterized by rhyth-

mical and timbral alignment with the target. In some cases we

noticed erroneous temporal shifts of the whole predicted rhyth-

mical pattern within a reconstructed excerpt. Additional tests

with smaller window sizes lead to a decrease in amount and size

of such errors, while increasing the amount of false positive pre-

dictions of both sine wave and speech patterns. In some cases

speech and sine wave patterns were mixed up, but still with cor-

rect temporal alignment of note onset positions between target

and predictions. Figure 3 shows reconstructions after training

on all subjects of the OpenMIIR speech dataset. Multi-subject

training lead to results with improved temporal alignment of tar-

gets and predictions. Here, in more cases the two timbres (sine

wave and speech pattern) were confused. This indicates that the

correct prediction of the timbre is more subject-specific than

the temporal and rhythmical aspects. Increasing the amount of

training data for both trials enhanced the overall reconstruction

quality, training only on the speech trials still lead to tempo-

rally meaningful reconstructions of the sine wave tone patterns.

We found the stimulus reconstruction quality to be best when

including 4 subjects for cross-subject training and testing.

Increasing the amount of dropout within the EEG decoder

(up to 40 %) turned out to be crucial for reconstructions of

comparable quality for trials in subjects that were excluded

entirely from the training procedure. Training with randomized

window start positions and using overlapping overlapping

windows proved to enhance the reconstruction quality. This

suggests that Mel spectrogram reconstruction quality for this

dataset is limited by the amount of available training data.

Compared to the OpenMIIR dataset, the NMED-T dataset

provided more training data with increased target complexity.

The reconstructions showed different characteristic in visual

inspection. Often times, the timbre reconstruction dominated

the reconstruction of temporal aspects, especially in parts that

featured multiple instruments or singing voice. In fewer cases,

but within all songs, the onsets of percussion, speech or other

sounds were reconstructed. For all trained models, timbre

reconstruction was visible after around 500 epochs, while

temporal aspects were learned at later stages. Figure 4 provides

examples for reconstructed excerpts of the perceived full-length
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Figure 2. Mel spectrogram reconstructions of perceived rhyth-

mical trials for the VCCA model trained on subject ’P13’ of

the OpenMIIR speech dataset. Target stimuli are presented

above their reconstructions.

Figure 3. Mel spectrogram reconstructions of perceived rhyth-

mical trials for the VCCA model trained on all subjects of the

OpenMIIR speech dataset. Target stimuli are presented above

their reconstructions.

songs contained in the NMED-T dataset. We found no substan-

tial difference in the quality of reconstructions within subjects

included into training and those from subjects excluded during

training. This might be due to the small amount and long dura-

tion of 10 stimuli in combination with a single presentation per

stimulus. Increasing the dropout rate after each convolutional

layer in the EEG encoder over 30 % increased the models

tendency to reconstruct temporal aspects, such as percussion

onsets. Training sets with a larger amount of subjects generally

Figure 4. Excerpts of reconstructed Mel spectrograms from

the NMED-T dataset. The target stimuli are shown above their

reconstructions. The two top rows are based on training on

all subjects. The three bottom rows are based on training on

10 subjects and testing on subjects that were excluded during

training.

improved reconstruction quality. Furthermore, the introduction

of overlapping EEG input windows increased the amount

of reconstructed temporal features. Models trained for more

than 2000 epochs showed more sparse reconstruction within

the frequency domain. This indicates that adding more data

and increasing training length can further increase the recon-

struction quality for naturalistic music. Often times, the size

of temporal misalignments was equal at all positions within

reconstructed excerpts. This indicates that the reconstruction

quality is dependent of the window size. Future work could

test this assumption by simultaneously training on EEG or

audio excerpts of various sizes within different encoders of

the VCCA model. This would furthermore allow the repre-

sentation of the latent concepts to include contexts of various

size. For example, in the audio domain, such contexts could

range from single note onsets to changes in song structure.

6.2 Imagined stimulus reconstruction

VCCA models trained on perceptual OpenMIIR speech data

could be applied to imagination trial reconstruction. The

reconstructed stimuli showed the same typical rhythmical

patterns and could be divided into speech and sine wave

predictions. However, the correct rhythmical predictions

were less often visible and more blurry. It is important to

note that the imagination was performed superimposed on a

constant metronome click. This means, that only the difference

396 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



between the rhythmical structure and timbre was based on

pure imaginative processes, while there were still perceptual

cues for temporal alignment. Models trained on multi-subject

perceptual data showed less blurry reconstructions. Adding

private encoders with imagination based EEG signal did not

cause a visible increase in reconstruction quality.

7. QUALITATIVE

ANALYSIS OF LEARNED AUDITORY CONCEPTS

We found musically meaningful representations of the

OpenMIIR speech stimuli in the latent space of models

trained intra-subject as well as cross-subject. Both EEG signal

from training and testing subsets could be used to produce

continuous interpolation. Processing EEG inputs from both

testing and training data sets and using the target audio stimuli

as validation, we found continuous representation across the

temporal, rhythmical and timbral domain. For any given

input, we could change the temporal position of the rhythmical

pattern as well as the timbre (within speech and sine wave

tones). Furthermore, the latent space enabled interpolation be-

tween metronome clicks and the sine wave tones of increased

loudness. However, this difference was found to a lesser degree

with data of the test set. Figure 5 (a) shows an example for

the interpolation between 3 embeddings based on EEG inputs

of the OpenMIIR speech training data set. Here, interpolation

between a syncopated and non-syncopated part of the rhythm

was done while simultaneously shifting the temporal position

of the rhythmical pattern within the reconstructed excerpt. The

non-syncopated excerpt was further interpolated into its rep-

resentation with speech signal. Figure 5 (b) shows topographic

projections of the brain activity reconstructed for each embed-

ding that was computed in Subfigure (a). For the sake of clarity

we show six topographic plots out of the total amount of 512

per embedding. Qualitative comparison of the EEG signal with

the original inputs indicated that overfitting the EEG data is not

possible when we stop training when the audio reconstruction

loss is saturated. For other use cases, higher quality EEG recon-

structions could be achieved with different training procedures,

such as unsupervised EEG reconstruction pretraining. Models

with smaller latent embeddings sizes (e.g. 8 units) did still

produce meaningful and continuous interpolations, but with

more blurring across the temporal and frequency domains. The

model forces EEG and audio to be shared even in these smaller

latent spaces. The neuroscientific meaningfulness of the EEG

reconstructions might further be validated in future work, for

example with shared fMRI representation in private encoders.

8. CONCLUSIONS

In this paper, we presented the application of a multi-view

generative model for shared auditory concept learning and

musical stimulus reconstruction from EEG signals. We showed

that the model can learn representations of simple rhythm

and timbre related concepts that are shared in audio and EEG

data. Furthermore, we could see first successes in approaching

naturalistic music and imagined stimulus reconstruction. The

presented framework is designed to be expandable to additional

modalities, such as fMRI data, or additional reconstruction

Figure 5. (a) Reconstructed Mel spectrograms after interpola-

tion in the learned latent space learned for Subject ’P13’ of the

OpenMIIR speech dataset. Embeddings that correspond to real

EEG inputs are framed. (b) Topographic visualization of the

reconstructed temporal brain activity. Each row represents the

brain activity reconstructed for the embedding in the same row

of Subfigure (a).

targets, such as emotional aspects of music cognition. In

combination with the ability to perform introspection on

the shared representation of stimuli and electrophysiological

responses, the model can be an aid for future EEG based

music information retrieval and research in music cognition.
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