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ABSTRACT

Utilizing deep learning techniques to generate musical
contents has caught wide attention in recent years. Within
this context, this paper investigates a specific problem re-
lated to music generation, music style transfer. This prac-
tical problem aims to alter the style of a given music piece
from one to another while preserving the essence of that
piece, such as melody and chord progression. In partic-
ular, we discuss the style transfer of homophonic music,
composed of a predominant melody part and an accom-
paniment part, where the latter is modified through Gibbs
sampling on a generative model combining recurrent neu-
ral networks and autoregressive models. Both objective
and subjective test experiment are performed to assess the
performance of transferring the style of an arbitrary mu-
sic piece having a homophonic texture into two different
distinct styles, Bachs chorales and Jazz.

1. INTRODUCTION

Automatic music generation is gaining traction in the mu-
sic industry because of its potential in mass producing mu-
sic according to a user-assigned style, such as genre or
mood. For example, the artificial intelligence (AI) mu-
sic composition service, Jukedeck, supports four genre op-
tions (i.e., folk, rock, electronic, and ambient) and allows
users to choose how the music feels (i.e., ambient, sparse,
meditate, and sci-fi) [1]. Most of the existing advanced
techniques employ deep learning techniques to perform
end-to-end generative modeling of a music style based on a
symbolic music format such as the musical instrument dig-
ital interface (MIDI) [3]. Various kinds of model configu-
rations were explored in this fashion, such as the encoder-
decoder framework [16], generative adversarial networks
(GAN) [6], autoregressive models [13], variational autoen-
coders (VAE) [8], long-short-term memory (LSTM) net-
works [7, 12], recurrent Boltzmann machines (RBM) [2]
and tied parallel networks [10]. These models are de-
signed for two slightly different scenarios of music gen-
eration: one is to simply generate music by taking noise as
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input [16], while the other is to generate adapted accompa-
niment or voices for a given melody or a lead sheet, also
known as reharmonization [7] or reorchestration [14].

In this paper, we discuss the music style transfer prob-
lem. More specifically, we aim at rearranging the ele-
ments that highly affects style of a given music piece (e.g.,
rhythm patterns in the accompaniment) while preserving
the essence (e.g., melody and chord progression) of that
piece. This problem has been of interest for a long time;
previous related studies include the use of genetic algo-
rithm (GA) [15] and optimization approaches [19]. In
contrast to reharmonization, the style transfer problem in
this paper uses the entirety of a music piece, including all
voices and accompaniment, as the input of a model. In
other words, we aim to obtain a system that can automati-
cally determine which part of an input music is to be pre-
served and which part is to be adapted to another style.

Besides, by leveraging the end-to-end modeling capa-
bility of deep learning, we investigate the potential of a
single neural network to model two or more distinct styles
based on training data of each style. To solve the style
transfer problem, there are two main challenges, model
complexity and the diversity over various musical genres.
For model complexity, since the DeepBach model is de-
signed for generating polyphonic music that only has a
fixed number of voices (i.e., number of polyphony) such as
Bach’s four-part chorales instead of music having varying
numbers of polyphony, such as Jazz music, the number of
voices in the DeepBach model needs to be increased to ac-
commodate the maximum number of voices. For example,
the DeepBach model can be extended to 10 voices or more,
but doing so also increases the model size and complexity
considerably. For the second challenge, the diversity of
various musical genres means that different music styles
correspond to different preferable model setting, making it
virtually impossible to develop a universal framework ap-
plicable to all kinds of music. For example, [14] proposed
a solution to generate music having different styles but had
to adopt different models for those styles.

This paper proposes a solution of music style trans-
fer with one single generalized model. It assumes that
input music is homophonic music decomposable into a
predominant melody and an accompaniment part. There-
fore, we only need to consider style transfer of the ac-
companiment; the melody, while being unaltered in the
output, can be used as a condition of the network. We
employ a DeepBach-based model to model temporal in-
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Figure 1: The proposed model for music style transfer.
The past and future part of the input data (in green) is
first transferred to another feature mapping (in dark gray)
through a shared fully-connected network. The LSTM net-
work then takes this feature mapping as input and outputs
a 150-by-2 matrix (in yellow), which acts as the condition
of the autoregressive model (in light gray). Finally, the au-
toregressive model predicts the activation of the interested
note given the current part of the input data (in red).

formation, and combine this model with an autoregressive
model (Wavenet [13]) to model the pitch information with-
out restricting the number of note co-occurrence in a sin-
gle frame. Experiment results of transferring the style of
an arbitrary homophonic music piece to Bachs chorale and
Jazz styles are provided in this paper since these two styles
are arguably the two most extensively investigated mu-
sic styles in the literature of automatic composition. The
source code and listening samples are available on-line. 1

2. MODEL

Our proposed model of an input music piece is shown in
Fig. 1. The model contains two LSTM networks, with
one taking data preceding a reference time as input and
another taking data following the reference time as input.
In addition, a specific autoregressive model, WaveNet, is
used to process the data of the reference time. Details of
the proposed model are discussed below.

2.1 Data representation

We represent a music score as a piano-roll matrix S ∈
RI×J+ and a metadata matrix M ∈ R3×J

+ . The concate-
nated matrix [S;M ] is then used as the input of the system.
The element at the i-th row and the j-th column of S is de-
noted as Sij , representing the pitch activation at pitch i and
at time j, where i ∈ [1, I], j ∈ [1, J ], I = 88, and J is the
number of time steps of the music piece. S:j ∈ RI is then
the j-th column of S, representing the pitch profile at time
j. To represent homophonic music data, a note activation,
Sij for i ∈ [1, 88], is represented as a Bernoulli random
variable, and Sij = 1 if there is a note activation at pitch i
and time j, and Sij = 0 if no note activation occurs at time
j. Since the number of polyphony of homophonic music

1 https://github.com/s603122001/Music-Style-Transfer

varies with time, S:j becomes a multi-hot vector, where its
number of non-zero elements varies with j.

The metadata matrix M describes the time grids, the
start and the end symbol of the music piece, thereby form-
ing a 3-by-J matrix. The time grids used in this paper are
the same as the ones in DeepBach: each beat interval is
divided into four subdivisions, and are indexed by 1, 2, 3,
and 4 respectively. The starting time and ending time are
denoted as 1 and others as 0. As a result, the dimension of
the input, [S:j ;M:j ], is 91.

To facilitate our discussion, we simplify the input data
in the following two ways. First, sustained note are con-
sidered as repeating notes with the same pitch . Secondly,
any two notes with the same time and pitch are considered
as one note.

2.2 Model Architecture

The proposed model with parameterization θ is obtained
by the following optimization problem:

max
θ

∑
ij

log p
(
Sij = 1|S\ij ,M, θ

)
. (1)

The formulation (1) can be viewed as a generalized ver-
sion of the original DeepBach network discussed in [7],
where the number of voices is fixed at 4 and the pitch of
each voice is modeled individually:

max
θi

∑
j

log pi
(
Vij |V\ij ,M, θi

)
, for i ∈ [1, 4] . (2)

The data representation Vij ∈ R4×J in (2) is different
from Sij ; Vij is the pitch number of the i-th voice (i.e., 1
for soprano, 2 for alto, 3 for tenor, and 4 for bass) at time
j. The four networks in DeepBach have the same struc-
ture, each processing only one part of the four-part Bach’s
chorales and producing an output limited to monophonic
music. By using the four networks together, the condi-
tional probability of notes occurred simultaneously in dif-
ferent parts can be covered.

We tackle our task on the basis of DeepBach because
accessing both past and future parts of a score mitigates
the problem of transition modeling [18], a major obstacle
for music modeling. Besides, the temporal feature of mu-
sic can be well captured with this model (shown in Sec-
tion 3.4). Although DeepBach succeeds in handling Bachs
4-part chorales, it is not readily suitable for our problem
scenario. To adapt the original DeepBach to accommodate
more music types, especially for the music having a ho-
mophonic texture with varying numbers of polyphony, we
remove the restriction of voicing and abandon the origi-
nal four-network structure, and adopt one single network
to process the multi-hot piano-roll representation.

Reducing the number of networks to one causes our
generalized DeepBach to lose the ability to model the joint
distribution of notes articulated simultaneously at a given
time step. Besides, [7] indicated that using the piano-roll
representation causes the generated result to be trapped in
isolated regions during the Gibbs sampling process (see

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 741



(a) Dilated convolutional block

(b) Autoregressive block

Figure 2: Illustration of the autoregressive block and di-
lated convolutional block of a conditional Wavenet.

Section 2.4). In order to overcome these issues, we employ
an autoregressive model, Wavenet [13], to control the rela-
tionship among the 88 possible pitch activations at a given
time step j. The joint distribution of S:j = {S1j ....S88j}
can be written as the product of conditional probabilities
of all pitches:

p(S:j) =
88∏
i=1

P (Sij |S1j , ..., S(i−1)j , S\S:j) . (3)

The Wavenet models the conditional probabilities by
stacking dilated causal convolution layers [13]. We then
employ the output of the generalized DeepBach model as a
constraint. This is implemented by a dilated convolutional
block with constraint (see Fig. 2a) and an autoregressive
block to predict the output by running from i = 1 to i = 88
(see Fig. 2b). Implementation details of them can be seen
in [13].

In summary, the output of the generalized DeepBach
represents the temporal context of music, and it constrains
the Wavenet model to ensure that the output is musically

reasonable in terms of the harmony progression and other
contextual structures.

2.3 Implementation details

The model is implemented using the Keras [4] library with
tensorflow as the back end. First, input data is divided,
such that each unit of the input data contains a segment
of four time steps, i.e., a 91 × 4 matrix, and the segments
do not overlap (see the dark green part in Fig. 1). Every
segment is first flattened, and the flattened segment is em-
bedded into a 150-D vector with a shared fully connected
layer for dimension reduction (see the dark gray part in Fig.
1), so as to incorporate information over a larger temporal
range with a smaller model capacity. Similar to the original
DeepBach model, two LSTM models are employed, one
dealing with the past embedded feature mappings and the
other dealing with the future ones. Both LSTM networks
take a series of embedded features with 32 time steps, i.e.,
a 150-by-32 matrix, as the input. Both networks contain 4
LSTM layers, each having 150 hidden units (see the blue
block in Fig. 1). The outputs of the two networks are con-
catenated and then transformed to an 88-D vector with an-
other fully-connected layer. This merged LSTM output is
then used as the condition of the Wavenet that employs the
original input feature map at the current time step, as il-
lustrated in Fig. 2a. The Wavenet consists of five dilated
convolution layers as shown in Fig. 2b, where only the top
two of the five layers are conditioned by the merged LSTM
output and the other three are not conditioned. A dropout
rate of 30% is adopted for each layer, and batch normal-
ization is added after the activation of each convolutional
layer. The model is optimized using ADAM [11].

2.4 Style transfer

The algorithm of style transfer is shown in Algorithm 1,
and the number of pitch range p is 88 in this paper. Inspired
by the idea in [7], the style transfer is conducted by using
Gibbs sampling to sample the model and then performing
an iterative update on the elements of the input score ma-
trix. In contrast to those models using noise as input [7,16],
the input of our model is the music score to be transferred,
and this initialization enables the resulting musical struc-
ture to follow the original one. In every iteration of the op-
timization process, all the elements at the same time step
in the input matrix (including both note activation and si-
lence) are visited and updated iteratively. It is important to
point out that all notes at the same time step are updated
together for the chosen target time step. While doing this
partly violates the original concept of Gibbs sampling, it
produces stable results in the experiments.

Sampling from an autoregressive model is inefficient
due to the sequential property that every output is condi-
tioned on all the previous ones. To speed up, we adopt the
strategy of independent Gibbs sampling [9, 17]. Indepen-
dent Gibbs sampling uses an annealed masking probability
α that controls the percentage of the elements in the matrix
that are to be updated independently, making the input ap-
proach a stable condition in a short time [9,17]. In the n-th
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Algorithm 1 Music Style Transfer

Input: I by J score matrix S, number of pitch range P ,
maximum number of iteration N , maximum and min-
imum annealed masking probability [αmax αmin], an-
nealed masking ratio η

1: α← αmax, Ŝ ← S, c← 0
2: for n from 1 to N do
3: Choose time index j in the range of J
4: if α > αmin then
5: Update {Sij}Pi=1 by p(Sij |Ŝ1j , · · · , Ŝ(i−1)j ,

Ŝ\Ŝ:j)
6: c← c+ P
7: if c > (α · P · J) then
8: c← 0
9: Ŝ ← S

10: end if
11: α← α− αmax−αmin

η·N
12: else
13: Update {Sij}Pi=1 by p(Sij |S1j , · · · , S(i−1)j ,

S\S:j)
14: end if
15: end for
Output: Transferred score matrix S

iteration of such a sampling process, and for some maximal
and minimal probabilities αmax and αmin, α is updated by
the following formula:

αn = max

(
αmin, αmax −

n(αmax − αmin)

ηN

)
, (4)

where N and η represent the total number of Gibbs steps
and the annealed masking ratio controlling the required
time for α approaching αmin. As α is reduced to the mini-
mum, the procedure approximates the standard Gibbs sam-
pling, which updates only one element at one time and
compensates the poor result produced in the independent
phase. The advantage of using independent Gibbs sam-
pling is its efficiency. Besides, independent Gibbs sam-
pling gives more stable outcomes, especially when trans-
ferring to challenging genres like Jazz.

This research also discovers that during the transfer pro-
cess, the melody in the original music tends to vanish dur-
ing the iteration. As a result, we currently apply a con-
straint on the melody part to address this issue, and leave
the style transfer of the melody part to future work.

3. EXPERIMENTS AND DISCUSSION

3.1 Datasets

Two datasets, Bach’s four-part chorales and Jazz music,
are employed as the training data. The Bach dataset con-
tains 357 Bach four-part chorales included in the music21
toolkit [5]. The Jazz dataset contains 487 songs either col-
lected manually on-line or generated on our own according
to the scores in the well-known Real Book. To simplify the
experiment, we did not distinguish among the sub-genres
of Jazz, and all of the Jazz pieces are played in Jazz trio,

containing one piano, one double bass and one drum. The
drummer part is ignored since we consider only the har-
monic part of music in this paper. In the training process,
we perform data augmentation, by pitch-shifting each song
in the two datasets up and down by at most 6 semitones in
order to cover all possible keys. As a result, we have 4858
pieces and 6331 pieces in the Bach dataset and the Jazz
dataset, respectively. In addition, the two datasets are com-
piled in different time resolutions. In the Bach dataset, a
sixteenth note is defined as one time step, while in the Jazz
dataset, a thirty-second note is defined as one time step, as
the latter one contains faster note groups.

Four songs with different styles were selected as the
testing data: Rocky Raccoon by Beatles, Paranoid Android
by Radiohead, Live and Let Die by Paul McCartney, and
Beethoven’s Moonlight Sonata, Op. 27, No. 2. Each of
the song was cropped to 30 seconds long. These four test-
ing songs will be used in both the objective evaluation and
the subjective test.

3.2 Experiment settings

Experiments are conducted to demonstrate the effect of our
solution to the task of transferring the style of an input mu-
sic piece to Bach or Jazz style, and we employ the pro-
posed models trained from the afore-mentioned datasets of
Bachs chorales and Jazz, respectively. To verify the ca-
pability of the network in modeling signals with a vary-
ing number of voices, we employed two different versions
of the network, one without the autoregressive model (de-
noted as “LSTM only”), and the other incorporating the
autoregressive model (denoted as “LSTM-WN”). We com-
pare the following three models:

1. LSTM-to-Bach: transfer the style of input music to
Bach’s chorale using the LSTM network only.

2. LSTM-WN-to-Bach: transfer the style of input mu-
sic to Bach’s chorale using the LSTM combined
with the Wavenet.

3. LSTM-WN-to-Jazz: transfer the style of input music
to Jazz using the LSTM combined with the Wavenet.

LSTM-to-Jazz is excluded from the experiment results
because our pilot study showed that without the autoregres-
sive model, the generated outputs appear to be composed
of random note groups due to the wide diversity of the Jazz
dataset. Since a subjective test is hard to be performed with
such output samples, we eliminate this case in the follow-
ing experiments. For further comparison, we also com-
pare our model with the original DeepBach model, under
the scenario of reharmonizing given melodies using a pre-
trained DeepBach model.

3.3 Metrics for objective evaluation

To analyze the performance of a style transfer system and
to compare the songs before and after a transferring pro-
cess, we divide the style transfer task into 3 sub-parts and
evaluate them with different metrics.
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1. Content preservation of the original style. Ac-
cording to our definition of music style transfer, a
good music style transfer system should preserve
the backbone of an input song. This means that the
overall structure of a song, such as chord progres-
sion, should not be changed. Therefore, the content
similarity between the original song and the trans-
formed one should be considered. To evaluate the
content similarity between two music pieces, we first
transfer the MIDI representation (in piano roll) of
every time step into a chroma vector with the 12
pitch classes, then compute the moving average of
the chroma vector within a frame size of half bar,
which is 8 time steps in the Bach’s dataset and 16
time steps in the Jazz dataset. Finally, the cosine
similarity between every time step in the two score
matrices is calculated to measure the content preser-
vation degree of the transfer process.

2. Harmony structure similarity to the transferal target
style. Common harmony sets (i.e., combination of
notes) vary across different music styles. For exam-
ple, chords with an extension note like 9th and 11th
are more often used in Jazz music than in Bach’s
chorales. This characteristic is utilized to visualize
how such distribution changes after a style trans-fer.
First the transfer target styles of interest in this pa-
per are represented by collecting all existing har-
mony combinations in the two datasets, and then
mapping them to a 2-D plane by using the principal
component analysis (PCA) and then the t-distributed
stochastic neighbor embedding (t-SNE) method. By
visualizing such 2-D features of the original and
transferred songs on the plane, we could observe the
difference of locations between them, and how the
transferred song moves toward the target dataset.

3. Temporal structure imitating the transferred style.
Rhythmic patterns are an important characteristic in
distinguish different music styles. To model this
property, we utilize the fact that rhythm has a strong
correlation with the timing of harmony changes. For
example, it is common that a chord change coincides
with a strong beat. Therefore, we define the har-
monic transition point of a song to be a time step
where at least three notes change in comparison to
the previous time step, and then we plot the distri-
bution of these points within every bar with the tem-
poral unit being an eighth note. The result is a 32-D
vectors representing the major pattern of rhythm and
harmonic transitions. We examine how similar such
pattern of the transferred music pieces is to the pat-
tern of a target dataset.

3.4 Objective evaluation

Table 1 shows the performance index of content preserva-
tion, the average cosine similarity, of the four testing songs
before and after style transfer. We list the results of the pro-
posed models and the original DeepBach [7], being used as

To Bach To Jazz
DeepBach 0.39 N/A
LSTM-to-Bach 0.86 N/A
LSTM-WN-to-Bach 0.76 N/A
LSTM-WN-to-Jazz N/A 0.56

Table 1: Evaluation results of Content Preservation in
terms of cosine similarity.

Figure 3: Result of the Harmony Distribution. Data points
are the piano roll features mapped to a 2-D space through
PCA and tSNE. Blue: Jazz dataset. Yellow: Bach dataset.
Black: testing clips of Jazz music. Orange: testing clips
transferred to Bach’s style.

a baseline. We do not use the original DeepBach model for
style transfer to Jazz because its number of voice is fixed
at 4. Notably, the original DeepBach, which uses only the
main melody to perform reharmonization, is less effective
in following the structure of the original pieces than the
proposed models designed for homophonic music.

Fig. 3 illustrates the harmony distribution of the
cropped segments of five pieces in the Jazz dataset, before
and after a style transfer using the LSTM-WN-to-Bach
model. Here we illustrate the result of Jazz data instead
of the testing songs because this is a genre-to-genre com-
parison. As shown in Fig. 3, the resulting harmony dis-
tributions indicate that all data points of the Jazz data are
originally within the distribution of the Jazz dataset. After
style transfer, most of the data points move toward the dis-
tribution of the Bach dataset, and some of the transferred
data points are even located within the Bach distribution.

Fig. 4 shows the results of temporal structure similarity
of the four testing songs before and after style transfer. We
used the same songs and models in the content preserva-
tion part. Results show that for the transfer-to-Bach case,
all models fit fairly well to the pattern representing the
Bach dataset, with the original DeepBach model produc-
ing a few extra transitions unseen in the Bach dataset. For
the transfer-to-Jazz task, the proposed model also fits the
pattern of the target dataset well.
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Figure 4: Evaluation results on temporal structures.

Figure 5: Result of the subjective test. The scores rep-
resent the subjects’ evaluation on how similar the style of
music to the genre listed in the questionnaire.

3.5 Subjective tests

To evaluate the performance of our model from a human
perception perspective, a listening test was conducted with
63 participants. Among the participants, 51 of them have
the experience of being a music performer, and 17 of those
51 participants receive formal music education or have
work experience in related fields.

Each of the four testing songs was transferred using the
three afore-mentioned models: LSTM-to-Bach, LSTM-
WN-to-Bach, and LSTM-WN-to-Jazz, respectively. As
a result, three different versions were produced for each
song, and every participant evaluated a total of 12 songs.
For each song to be transferred, the participants were asked
to determine the style of the main melody from 4 music
styles: Baroque music (i.e., Bachs), Jazz, Romanticism,
and Blues. This question aims to direct their attention to
both melody and accompaniment parts. Note that Roman-
ticism and Blues are extra options added to avoid a possi-
ble bias in the questionnaire. After answering the question,
the participants then evaluated the degree of similarity be-
tween the transferred songs and the 4 music styles above,
based on their music knowledge and personal perception.
The evaluation was in the scale from 1 (low) to 5 (high).

The results of the subjective test are shown in Fig. 5.
The results are averaged for different models. It can be
seen that, for the cases of transferring to Bach’s style,
the rated degrees of similarity of the transferred songs to
Baroque and Romanticism are both high. According to a

(a) Original version

(b) Transfer to Bach

(c) Transfer to Jazz

Figure 6: Transfer results of Live and Let Die using the
proposed model. The score is output by LogicPro.

participant who is a major in music, this phenomenon is re-
lated to the main melodies and the original songs we pick.
However, the model with Wavenet produced transferred
songs rated with the highest similarity degree to Baroque,
demonstrating the necessity of the Wavenet component in
our model. For the case of transferring to Jazz style, the
degree of similarity to Jazz surpasses other types of music.

One test sample used in the subjective test is outputted
as music scores illustrated in Fig. 6 to give us some in-
sights into the capability of the proposed models. In Fig.
6(b), the harmony and music contents are simplified with
respect to the original version since the contents of Bach’s
4-part chorales are usually not complicated. Apart from
this, the difference between the temporal structure of the
two scores is a clear example that our model has learned
the temporal feature of the music style. In Fig. 6(c), we
find many non-chord notes and some taste of syncopated
rhythm, both marking the characteristics of Jazz music.

4. CONCLUSION AND FUTURE WORK

We have demonstrated the capability of our model in trans-
ferring arbitrary homophonic music scores into the styles
of Bach’s 4-part chorales and Jazz, and both objective
and subjective tests are conducted. The advantage of our
method is that it does not pose any restrictions on input
music scores, and thus it can be easily applied in other sce-
narios. Besides, different styles of music can be modeled
using the same framework, simplifying the process when
we want to expand the collection of target music genres.
Future work will focus on the style transfer of a melody,
which is not considered in this paper, as well as further
investigation into complicated music styles and extensive
applications based on the proposed model.
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