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ABSTRACT

We present VocalSet, a singing voice dataset of a capella
singing. Existing singing voice datasets either do not
capture a large range of vocal techniques, have very few
singers, or are single-pitch and devoid of musical context.
VocalSet captures not only a range of vowels, but also a
diverse set of voices on many different vocal techniques,
sung in contexts of scales, arpeggios, long tones, and ex-
cerpts. VocalSet has recordings of 10.1 hours of 20 pro-
fessional singers (11 male, 9 female) performing 17 differ-
ent different vocal techniques. This data will facilitate the
development of new machine learning models for singer
identification, vocal technique identification, singing gen-
eration and other related applications. To illustrate this, we
establish baseline results on vocal technique classification
and singer identification by training convolutional network
classifiers on VocalSet to perform these tasks.

1. INTRODUCTION

VocalSet is a singing voice dataset containing 10.1 hours
of recordings of professional singers demonstrating both
standard and extended vocal techniques in a variety of mu-
sical contexts. Existing singing voice datasets aim to cap-
ture a focused subset of singing voice characteristics, and
generally consist of fewer than five singers. VocalSet con-
tains recordings from 20 different singers (11 male, 9 fe-
male) performing a variety of vocal techniques on 5 vow-
els. The breakdown of singer demographics is shown in
Figure 1 and Figure 3, and the ontology of the dataset is
shown in Figure 4. VocalSet improves the state of exist-
ing singing voice datasets and singing voice research by
capturing not only a range of vowels, but also a diverse
set of voices on many different vocal techniques, sung in
contexts of scales, arpeggios, long tones, and excerpts.
Recent generative audio models based on machine
learning [11, 25] have mostly focused on speech applica-
tions, using multi-speaker speech datasets [6, 13]. Gen-
eration of musical instruments has also recently been ex-
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Figure 1. Distribution of singer gender and voice type.
VocalSet data comes from 20 professional male and female
singers ranging in voice type.

plored [2,5]. VocalSet can be used in a similar way, but for
singing voice generation. Our dataset can also be used to
train systems for vocal technique transfer (e.g. transform-
ing a sung tone without vibrato into one with vibrato) and
singer style transfer (e.g. transforming a female singing
voice to a male singing voice). Deep learning models for
multi-speaker source separation have shown great success
for speech [7,21]. They work less well on singing voice.
This is likely because they were never trained on a vari-
ety of singers and singing techniques. This dataset could
be used to train machine learning models to separate mix-
tures of multiple singing voices. The dataset also con-
tains recordings of the same musical material with different
modulation patterns (vibrato, straight, trill, etc), making it
useful for training models or testing algorithms that per-
form unison source separation using modulation pattern as
a cue [17,22]. Other obvious uses for such data are train-
ing models to identify singing technique, style [9, 19], or a
unique singer’s voice [1, 10, 12, 14].

The structure of this article is as follows: we first com-
pare VocalSet to existing singing voice datasets and cover
existing work in singing voice analysis and applications.
We then describe the collection and recording process for
VocalSet and detail the structure of the dataset. Finally, we
illustrate the utility of VocalSet by implementing baseline
classification systems for identifying vocal technique and
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Figure 2. Mel spectrograms of 5-second samples of the 10 techniques used in our vocal technique classification model. All
samples are from Female 2, singing scales, except “Trill”, “Trillo”, and “Inhaled” which are found only in the Long Tones
section of the dataset, and “Spoken” which is only in the Excerpts section.

singer identification, trained on VocalSet.

2. RELATED WORK

A few singing voice datasets already exist. The Phona-
tion Modes Dataset [18] captures a range of vocal sounds,
but limits the included techniques to “breathy’, 'pressed’,
flow’, and 'neutral’. The dataset consists of a large num-
ber of sustained, sung vowels on a wide range of pitches
from four singers. While this dataset does contain a sub-
stantial range of pitches, the pitches are isolated, lacking
any musical context (e.g. a scale, or an arpeggio). This
makes it difficult to model changes between pitches. Vo-
calSet consists of recordings within musical contexts, al-
lowing for this modeling. The techniques listed above that
are observed in the Phonation Modes Dataset are based
on the different formations of the throat when singing
and not necessarily on musical applications of these tech-
niques. Our dataset focuses on a broader range of tech-
niques in singing, such as vibrato, trill, vocal fry, and in-
haled singing. See Table 2 for the full set of techniques in
our dataset.

The Vocobox dataset ! focuses on single vowel and
consonant vocal samples. While they feature a broad range
of pitches, they only capture data from one singer. Our data
contains 20 singers, with a wide range of voice types and
singing styles over a larger range of pitches.

The Singing Voice Dataset [3] contains over 70 vocal
recordings of 28 professional, semi-professional, and am-
ateur singers performing predominantly Chinese Opera.
This dataset does capture a large range of voices, like Vo-
calSet. However, it does not focus on the distinction be-
tween vocal techniques but rather on providing extended
excerpts of one genre of music. VocalSet provides a wide

! https://github.com/vocobox/human-voice-dataset

range of vocal techniques that one would not necessarily
classify within a single genre so that models trained on
VocalSet could generalize well to many different singing
voice tasks.

We illustrate the utility of VocalSet by implementing
baseline systems trained on VocalSet for identifying vo-
cal technique and singer identification. Prior work on vo-
cal technique identification includes work that explored
the salient features of singing voice recordings in order to
better understand what distinguishes one person’s singing
voice from another as well as differences in sung vow-
els [4, 12], and work using source separation and FO es-
timation to allow a user to edit the vocal technique used in
a recorded sample [8].

Automated singer identification has been a topic of in-
terest since at least 2001 [1,10, 12, 14]. Typical approaches
use shallow classifiers and hand-crafted features (e.g. mel
ceptral coefficients) [16,24]. Kako et al. [9] identifies four
singing styles music style using the phase plane. Their
work was not applied to specific vocal technique classi-
fication, likely due to the lack of a suitable dataset. We hy-
pothesize that deep models have not been proposed in this
area due to the scarcity of high-quality training data with
multiple singers. The VocalSet data addresses these issues.
We illustrate this point by training deep models for singer
identification and vocal technique classification using this
data.

For singing voice generation, [20] synthesized singing
voice by replicating distinct and natural acoustic features
of sung voice. In this work, we focus on classification tasks
rather than generation tasks. However, VocalSet could be
applied to generation tasks as well, and we hope our mak-
ing this dataset available will facilitate that research.
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Figure 3. Distribution of singer age and gender. Singer
age p = 30.9,0 = 8.7. We observe that the majority
of singers lie in the range of 20 to 32, with a few older
outlying singers.

3. VOCALSET
3.1 Singer Recruitment

9 female and 11 male professional singers were recruited
to participate in the data collection. A professional singer
was considered to be someone who has had vocal training
leading to a bachelors or graduate degree in vocal perfor-
mance and also earns a portion of their salary from vo-
cal performance. The singers are of a wide age range and
performance specializations. Voice types present in the
dataset include soprano, mezzo, countertenor, tenor, bari-
tone, and bass. See Figure 1 for a detailed breakdown of
singer gender and voice type and Figure 3 for the distri-
bution of singer age vs. gender. We chose to include a
relatively even balance of genders and voice types in the
dataset in order to capture a wide variety of timbre and
spectral range.

3.2 Recording setup

Participants were recorded in a studio-quality recording
booth with an Audio-Technica AT2020 condenser micro-
phone, with a cardioid pickup pattern. Singers were placed
close to the microphone in a standing position. Reference
pitches were given to singers to ensure pitch accuracy. A
metronome was played for the singers immediately prior
to recording for techniques that required a specific tempo.
Techniques marked ’fast’ in Table 2 were targeted at 330
BPM, while techniques marked ’slow’ were targeted at 60
BPM. Otherwise, the tempo is varied.

3.3 Dataset Organization

The dataset consists of 3,560 WAV files, totalling 10.1
hours of recorded, edited audio. The audio files vary in
length, from less than 1 second (quick arpeggios) to 1
minute. Participants were asked to sing short vocalises
of arpeggios, scales, long tones, and excerpts during the

data collection. The arpeggios and scales were sung us-
ing 10 different techniques. The long tones were sung on
7 techniques, some of which also appear in arpeggios and
scales (see Figure 4). Each singer was also asked to sing
Row, Row, Row Your Boat, Caro Mio Ben, and Dona Nobis
Pacem each in vibrato and straight tone, as well as an ex-
cerpt of their choice. The techniques included range from
standard techniques such as ’fast, articulated forte’ to dif-
ficult extended techniques such as ’inhaled singing’. For
arpeggios, scales, and long tones, every vocalise was sung
on vowels ’a’, ’e’, ’i’, ’0’, and "u’. A portion of the arpeg-
gios and scales are in both C major and F major (underlined
in 4, while the harsher extended techniques and long tones
are exclusively in C major. For example, singers were in-
structed to ’belt’ a C major arpeggio on each vowel, to-
talling to 5 audio clips (one per vowel). This is shown in
Figure 4. Table 2 shows the data broken down quantita-
tively by technique.

The data is sorted in nested folders specifying the
singer, type of sample, and vocal technique used. This
folder hierarchy is displayed in Figure 4.

Each sample is uniquely labelled based on this nested
folder structure that it lies within. For example, Female 2
singing a slow, forte arpeggio in the key of F and on the
vowel ’e’ is labelled as *f2_arpeggios_f_slow_forte_e.wav’.

The dataset is publicly available > and samples from
the dataset used in training the classification models are
also available on a demo website 3.

4. EXPERIMENTS

As an illustrative example of the utility of this data, we per-
form two classification tasks using a deep learning model
on the VocalSet data. In the first task, we classify vocal
techniques from raw time series audio using convolutional
neural networks. In the second task, we identify singers
from raw audio using a similar architecture. The network
architectures are shown in Table 1. Note, architectures are
identical except for the final output layer.

4.1 Training data and data preprocessing

We removed silence from the beginning, middle, and end
of the recordings and then partitioned them into 3 second,
non-overlapping chunks at a sample rate of 44.1k. The
chunks were then normalized using their mean and stan-
dard deviation so that the network didn’t use amplitude as
a feature for classification. Additionally, by limiting the
chunk to 3 seconds of audio, our models can’t use musical
context as a cue for learning the vocal technique. These
vocal techniques can be deployed in a variety of contexts,
so being context-invariant is important for generalization.
For each task, we partitioned the dataset into a training
and a test set. For the vocal technique classification, we
place all samples from 15 singers in the training set and
all samples from the remaining 5 singers in the test set.
For the singer identification, we needed to ensure that all

2 https://doi.org/10.5281/zenodo.1203819
3 https://interactiveaudiolab.github.io/demos/vocalset
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Figure 4. Breakdown of the techniques used in the VocalSet dataset. Each singer performs in four different contexts:
arpeggios, long tones, scales, and excerpts. The techniques used in each context are shown. Each technique is sung on 5
vowels, and underlined techniques indicate that the technique was sung in F major and C major.

Layer Name Input Convl BatchNorm1 | MaxPooll Conv2 BatchNorm?2 | MaxPool2 Conv3 BatchNorm3 | MaxPool3 Densel | Dense2
# of Units/Filters 3*44100 | 16 16 - 8 8 - 32 32 - 32 1020
Filter Size, Stride (1,128), (1, 1) (1,64), (1,8) | (1,64), (1, 1) (1,64), (1,8) | (1,256),(1, 1) (1,64), (1, 8) -
Activation function | - ReLU - ReLU - ReLU - ReLU | softmax

Table 1. Network architecture. The input to the network is 3 seconds of time series audio samples from VocalSet. The out-
put is a 10-way classification for vocal technique classification and a 20-way classification for Singer ID. The architecture
for both classifiers is identical except for the output size of the final dense layer. For the dense layers, L2 regularization was

set to .001.

singers were present in both the training and the test sets in
order to both train and test the model using the full range
of singer ID possibilities. We randomly sampled the entire
dataset to create training and test sets with a ratio of 0.8
(train): 0.2 (test), while ensuring all singers were both in
training and testing data. The recordings were disjoint be-
tween the training and test sets, meaning that parts of the
same recording were not put in both training and testing
data.

Our vocal technique classifier model was trained and
tested on the following ten vocal techniques: vibrato,
straight tone, belt, breathy, lip trill, spoken, inhaled
singing, trill, trillo, and vocal fry (bold in Table 2). Mel
spectrograms of each technique are shown in 2, illustrating
some of the differences between these vocal techniques.

The remaining categories, such as fast/articulated forte
and messa di voce were not included in training for vo-
cal technique classification. These techniques are heav-
ily dependent on the amplitude of the recorded sample,
and the inevitable human variation in the interpretation
of dynamic instructions makes these samples highly vari-
able in amplitude. Additionally, singers were not directed
to sing a particular technique when making amplitude-
oriented technique. As a result, singers often paired
these amplitude-based techniques with other techniques at
the same time, making the categories non-exclusive (e.g.
singing fast/articulated forte with a lot of vibrato, or pos-
sibly with straight tone). Additionally, messa di voce was
excluded because this technique requires singers to slowly
crescendo and then decrescendo which, in full, was gen-
erally much longer than 3 seconds (the length of training
samples).

We train our models with a convolution neural network
using RMSProp [23], a learning rate of le-4, ReLU activa-
tion functions, an L2 regularization of 1le-3, and a dropout

of 0.4 for the second to last dense layer. We use cross en-
tropy as the loss function and a a batch size of 64. We train
both the singer identification and vocal technique classifi-
cation models for 200,000 iterations each, where the only
difference between the two model architectures is the out-
put size of the final dense layer (10 for vocal technique,
20 for singer ID). Both models were implemented in Py-
Torch. [15].

4.1.1 Data augmentation

We can also augment our data using standard data augmen-
tation techniques for audio such as pitch shifting. We do
this to our training set for vocal technique classification,
but not for singer identification. Every excerpt is pitch
shifted up and down 0.5 and 0.25 half steps. We report
the effect of data augmentation on our models in Table 3.
As shown in the table, we did observe some but not a sig-
nificant accuracy boost when using the augmented model.

4.2 Vocal technique classification
4.2.1 Results

Evaluation metrics for our best 10-way vocal technique
classification model are shown in Table 3. We were able
to achieve these results using the model architecture in Ta-
ble 1. This model performs well on unseen test data as we
can see from table metrics. When examining sources of
confusion for the model, we observed that the model most
frequently incorrectly labels test samples as “straight” and
“vibrato”. We attribute this in part to the class imbalance in
the training data in which there are many more “vibrato”
and “straight” samples than other techniques. Addition-
ally, for techniques such as “belt”, many singers exhib-
ited a great deal of vibrato when producing those samples
which could place such techniques under the umbrella of
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Figure 5. Confusion matrix for the technique classification
model showing the quantity of predicted labels vs. true la-
bels for each vocal technique. This model was trained on
10 vocal techniques. A class imbalance can be observed, as
the number of vibrato and straight samples is much larger
than the remaining techniques. The model performs rela-
tively well for a majority of the techniques, however we see
that nearly half of the vocal technique test samples were in-
correctly classified as straight tone.
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Figure 6. Confusion matrix for the singer identification
model displaying the predicted singer identification vs. the
true singer identification. We can observe that female
voices are much more commonly classified incorrectly ver-
sus male voices, likely due to the broader range of male
voices present in the training data.

Vocal Techniques Examples (#) | Time (min.)
Fast/articulated forte 394 22.57
Fast/articulated piano 386 23.03
Slow/legato forte 395 65.28
Slow/legato piano 397 69.75
Lip trill 202 24.40
Vibrato 255 57.79
Breathy 200 28.00
Belt 205 26.24
Vocal fry 198 34.10
Full voice forte 100 16.29
Full voice pianissimo 100 16.58
Trill (upper semitone) | 95 18.45
Trillo (goat tone) 100 14.54
Messa di voce 99 23.47
Straight tone 361 71.65
Inhaled singing 100 9.95
Spoken excerpt 20 4.06
Straight tone excerpt 60 24.19
Molto vibrato excerpt 59 24.55
Excerpt of choice 20 20.50
Table 2. The content of VocalSet, totalling to 10.1 hours of

audio. Each vocal technique is performed by all 20 singers
(11 male, 9 female). Some vocal techniques are performed
in more musical contexts (e.g. scales) than others. Bold
techniques were used for our classification task.

“vibrato”. We also observed a little bit of expected confu-
sion between “trill” and “vibrato”, as these techniques may
have some overlap depending on the singer performing the
technique. As seen in Figure 2, the spectrogram represen-
tation of these two techniques looks very similar. To ad-
dress the issue of class imbalance, we tried using data aug-
mentation with pitch shifting to both balance the classes
and create more data, but as previously stated and shown
in Table 3, there was little improvement over the original
model when using training data augmentation.

4.3 Singer identification (ID)
4.3.1 Results

Evaluation metrics for our best 20-way singer identifica-
tion model are shown in Table 3. The model architecture is
identical to that of the vocal technique classification model
(see 1), with the exception of the number of output nodes in
the final dense layer (20 in the singer identification model
vs. 10 in the technique model). The singer identification
model did not perform as well as the vocal technique clas-
sification model. As shown in Table 3, classifying male
voices correctly was much easier for the model than clas-
sifying female voices. This is expected due to the high
similarity between the female voices in the training data.
Figure 1 shows that the female data only contains 2 voice
types, while the male data contains 5 voice types.

Because voice type is largely dependent on the vocal
range of the singer, having 5 different voice types within
the male singers makes it much easier to distinguish be-
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Classification Task Prior | Precision | Recall | Top-2 Accuracy | Top-3 Accuracy | Male Accuracy | Female Accuracy
Vocal Technique 0.242 | 0.676 0.619 | 0.801 0.867 -

Vocal Technique (trained on augmented data) | 0.242 | 0.677 0.628 | 0.815 0.891 - -

Singer ID - 0.473 0.516 | 0.638 0.700 0.684 0.351

Table 3. Evaluation metrics for our vocal technique and Singer ID classification models performing on unseen test data.
“Prior” indicates the accuracy if we were to simply choose the most popular class (“straight”) to predict test data. We
observe a very slight increase in accuracy in the augmented vocal technique model. Our singer ID model has lower
performance, likely due to the similarity between different, primarily female, singers.

tween male singers than female singers. The accuracy (re-
call) for classifying unseen male singers was nearly twice
as good as that of unseen female singers.

S. FUTURE WORK

In the future, we plan to experiment with more network
architectures and training techniques (e.g. Siamese train-
ing) to improve the performance of our classifiers. We also
expect researchers to use the VocalSet dataset to train a vo-
cal style transformation model that can transform a voice
recording into one using one of the techniques that we have
recorded in VocalSet. For example, an untrained singer
could sing a simple melody on a straight tone, and our sys-
tem could remodel their voice using the vibrato or articula-
tion of a professional singer. We envision this as a tool for
both musicians and non-musicians alike, and hope to cre-
ate a web application or even a physical sound installation
that users could transform their voices in. We would also
like to use VocalSet to train autoregressive models (e.g.
Wavenet [25]) that can generate singing voice of specific
techniques.

6. CONCLUSION

VocalSet is a large dataset of high-quality audio record-
ings of 20 professional singers demonstrating a variety of
vocal techniques on different vowels. Existing singing
voice datasets either do not capture a large range of vo-
cal techniques, have very few singers, or are single-pitch
and lacking musical context. VocalSet was collected to fill
this gap. We have shown illustrative examples of how Vo-
calSet can be used to develop systems for diverse tasks.
The VocalSet data will facilitate the development of a
number of applications, including vocal technique iden-
tification, vocal style transformation, pitch detection, and
vowel identification. VocalSet is available for download at
https://doi.org/10.5281/zenodo.1203819.
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