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ABSTRACT

Metrical alignment is an integral part of any complete au-
tomatic music transcription (AMT) system. In this paper,
we present an HMM for both detecting the metrical struc-
ture of given live performance MIDI data, and aligning that
structure with the underlying notes. The model takes as in-
put only a list of the notes present in a performance, and
labels bars, beats, and sub beats in time. We also present
an incremental algorithm which can perform inference on
the model efficiently using a modified Viterbi search. We
propose a new metric designed for the task, and using it,
we show that our model achieves state-of-the-art perfor-
mance on a corpus of metronomically aligned MIDI data,
as well as a second corpus of live performance MIDI data.
The code for the model described in this paper is available
at https://www.github.com/apmcleod/met-align.

1. INTRODUCTION

Meter detection is the organisation of the beats of a given
musical performance into a sequence of trees at the bar
level, in which each node represents a single note value
(although the actual durations of a node at a given level
will vary with the tempo). In common-practice Western
music (the subject of our work), the children of each node
in the tree divide its duration into some number of equal-
value notes such that every node at a given depth has equal
value. The metrical structure of a single 4

4 bar, down to the
quaver level, is shown in Figure 1. Each level of a metrical
tree corresponds with a pulse level in the underlying mu-
sic: bar, beat, and sub beat, from top to bottom. The nodes
should align in time with corresponding pulses in the per-
formed music. There are theoretically more divisions fur-
ther down the tree all the way to the tatum level (the fastest
pulse present in a piece of music, often the 32nd note), but
as these three levels are enough to unambiguously identify
the time signature of a piece, we do not consider any lower.

The task is an integral component of automatic music
transcription (AMT), particularly when trying to identify
the time signature of a given performance. The time sig-
nature may change between bars (though this is not par-
ticularly common). However, such changes in structure
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Figure 1. The metrical structure of a 4
4 bar.

are not currently handled by our model, and are left for
future work. The proposed model can be applied to any
piece where the metrical tree structure under each node
at a given level of the tree is identical. In this work, we
evaluate our model only on the simple and compound me-
ter types 2

X, 3
X, 4

X, 6
X, 9

X, and 12
X (where X may take any

value), and leave more uncommon and irregular meters for
future work. Those interested in asymmetric meter detec-
tion should refer to [9].

Existing work on full metrical alignment of live perfor-
mance MIDI data is sparse. There is a good amount of
existing work on meter detection (but not alignment) from
metronomic data (e.g., [2, 14]), including some which la-
bels the meter type (i.e., duple or compound) of a given
piece of music, but does not align a full metrical structure
with the notes of the piece (except for synthetic rhythms, as
in [8]). There is existing work which performs full metrical
alignment of MIDI data, but not from live performance [4].
In the acoustic domain, beat tracking and downbeat detec-
tion are relatively common areas of research, but stop short
of a full meter detection and alignment (e.g. [1, 7]).

The related problems of rhythm quantisation and note
value detection have also seen some attention, but neither
are directly relevant to our task. For example, [17] quan-
tises performed rhythms to a grid, but the set of possible
onset locations for notes is known a priori (and changes
based on the time signature of the underlying piece). [3]
tracks beats and tempo, but does not go so far as to align
a full metrical grid with bars and sub beats. [15] assigns
a note value to each note, but does not explicitly align the
notes with any underlying beat or meter.

[22] performs full metrical structure detection and
alignment probabilistically from live performance data by
jointly modelling tempo, meter, and rhythm; however, the
evaluation was very brief, only testing the model on 3 bars
of a single Beatles piano performance, and the idea was
not used further on MIDI data to our knowledge. [19] pro-
poses a Bayesian model for the meter detection and align-
ment of monophonic MIDI performance data which mod-
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els the probability of a note onset occurring given the cur-
rent level of the metrical tree at any time with Bayes’ rule.
This is combined with a simple Bayesian model of tempo
changes, giving a model which can detect the full metri-
cal structure of a performance. [20] extends this model to
work on polyphonic data, combining it into a joint model
with a Bayesian voice separator and a Bayesian model of
harmony. This joint model performs well on full metri-
cal structure detection and alignment on a corpus of piano
excerpts, and we compare against it in this work.

2. PROPOSED MODEL

Our proposed model tracks pulses at the tatum level of a
musical performance based on two musicological princi-
ples: (1) the rate of these tatums should be relatively con-
stant without large discontinuities; and (2) notes should lie
relatively close to these tatums. The model is an HMM
where the observed data is the notes of a given piece,
grouped into sets.

2.1 State Space

Each state S in our model represents a single bar, contain-
ing (1) a list of the tatums from that bar and (2) a metrical
hierarchy, describing which of those tatums are beats and
sub beats. The list of tatums is represented by S.t, where
S.ti is the ith tatum in the bar, and S.t|S.t| is the downbeat
of the following bar. The tatums are in increasing time
order, where T (S.ti) represents the time of tatum S.ti.
A state’s metrical hierarchy has some number of tatums
per sub beat, sub beats per beat, and beats per bar, as well
as an anacrusis length, measured by the number of tatums
which fall before the first downbeat of a given piece. In our
model, we restrict the number of tatums per sub beat to be
4, although in theory, any number could be used. We also
restrict the anacrusis length to be some integer multiple of
the number of tatums per sub beat, a simplifying assump-
tion that ensures the first note of each piece will fall on a
sub beat. The set of possible sub beat per beat and beat per
bar pairs (i.e., time signatures) are taken all of those found
in our training set ( 2X, 3

X, 4
X, 6

X, 9
X, and 12

X). A state’s tempo,
T(S), is defined as the average length of its beats.

Each possible initial state S0 contains no tatums, and
every possible metrical hierarchy is considered equally
probable. To reduce our model’s search space, we place
a restriction on the range of allowed values for T (S1):
tmin ≤ T (S1) ≤ tmax. Nonetheless, because the pos-
sible tatum times for each state are unbounded, our model
contains an infinite number of possible states. Thus, in-
stead of predefined emission and transition probabilities,
we define emission and transition functions, presented in
the following sections.

2.2 Emission Function

After the initial state (which emits nothing), each state Si
emits a set of notes Ni, containing only notes n whose
onset times lie between that state’s first (inclusive) and
last (exclusive) tatum. This set is allowed to be empty.

Each emitted note has an onset time On(n), an offset time
Off(n), and a pitch Pitch(n) (though it is unused).

The probability of a state Si to emit the note set Ni is
presented as P (Ni|Si) in Eqn (1). The first term, calcu-
lated entirely by the lexicalised probabilistic context-free
grammar (LPCFG) presented in [13], is used to prefer gen-
erating rhythms which have a high probability according
to the grammar. The LPCFG is a replacement grammar
which first parses a given rhythm into a metrical tree struc-
ture. It then assigns strengths to nodes in the tree based
on note duration in a process called lexicalisation. The
probability of a tree is calculated by taking the product
of the learned probabilities of each grammar transition,
based on counting occurrences of a given transition from
a training corpus of parsed rhythms. Each note is aligned
to the nearest tatum by the LPCFG in order to calculate
P (rhythm), but this alignment is neither saved nor emit-
ted. The LPCFG is designed to work directly on mono-
phonic melodies only. Therefore, for polyphonic input,
this P (rhythm) term is in fact a product of one probability
per voice, each of which is calculated by the LPCFG. For
voice assignments, we use [12] as a preprocessing step.

P (Ni|Si) = P (rhythm)
∏
n∈N

P (n|Si.t) (1)

The second term in Eqn (1) is used to prefer states
whose tatums align closely with the emitted notes, and is
calculated as in Eqn (2), where N1(µ, σ, x) conceptually
represents a normal distribution with mean µ and standard
deviation σ evaluated at x. 1 Thus, P (n|Si.t) is used to
assign higher probabilities to those states which emit notes
which are closely-aligned with their tatums. In this equa-
tion, closest(Si.t) represents the tatum from Si whose
time is closest to the onset time of the note n.

P (n|Si.t) = N1

(
0, σn,On(n)− T (closest(Si.t))

)
(2)

2.3 Transition Function

A state Si−1 may transition to a state Si if and only if:
(1) the two states’ metrical hierarchies are identical (our
model cannot handle pieces with time signature changes)
and (2) the time of the last tatum in Si−1 is equal to the
time of the first tatum in Si. Note that the second condition
is invalid in the case of a transition from S0 to S1 since S0

contains no tatums; in this case, we instead restrict S1.t1
to lie exactly on the first observed note’s onset time.

The transition probability P (Si|Si−1) is shown in Eqn
(3), where the first term, defined in Eqn (4), models the
probability of a tempo change and the second term, defined
in Eqn (5), models the spacing of the tatums themselves.

P (Si|Si−1) = P (T (Si)|T (Si−1))P (S.t) (3)
1 Normal distributions are used in multiple places throughout this

model with potentially widely varying standard deviations, resulting in
potentially wildly different results when evaluated at an identical number
of standard deviations from the mean for different normal distributions.
Since the distributions are used in contexts in which they cannot be prop-
erly normalised (due to their continuous domain), the precise probability
value for N1(µ, σ, x) is calculated using a standard normal distribution
with mean 0 and standard deviation 1 evaluated at x−µ

σ
.
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P (T (Si)|T (Si−1)) =

{
N1(µt0 , σt0 , T (Si)) i = 1

N1

(
0, σt,

T (Si)−T (Si−1)
T (Si−1)

)
i ≥ 2

(4)
P (S.t) = E(b ∈ S.t)

∏
b∈S.t

(
E(sb ∈ b)

∏
sb∈b

E(t ∈ sb)
)

(5)

In Eqn (4), the tempo of the first bar (where i = 1) is as-
sumed to be normally distributed around µt0 with standard
deviation σt0 , while subsequent tempo changes are evalu-
ated as the proportional change from the tempo of the pre-
vious bar, again normally distributed, this time with mean
0 and standard deviation σt. Percent change is used rather
than absolute change because human perception of tempo
changes have been shown to follow Weber’s Law [21].

For the tatum timings in Eqn (5), the function E(t), de-
fined in Eqn (6), evaluates the probability of the evenness
of any given list of times. E(b ∈ S.t) calculates this for all
of the beats b in the state, while the terms E(sb ∈ b) and
E(t ∈ sb) perform the same calculation for the sub beats
in each beat and the tatums in each sub beat respectively.

E(t) =

{
N1(µe, σe,

σ(t)
µ(t) )/Enorm

σ(t)
µ(t) ≥ µe

N1(µe, σe, µe)/Enorm
σ(t)
µ(t) < µe

(6)

Enorm =
1

2
+
µe
σe
N1(µe, σe, µe) (7)

E(t) is a piecewise function which takes as input a list
of the lengths of a group of tatums, sub beats, or beats
(rather than their times). Here, µ(t) represents the mean of
those lengths and σ(t) represents the standard deviation of
those lengths. The function is calculated as a modified nor-
mal distribution with mean µe and standard deviation σe,
based on the input list’s standard deviation as a proportion
of its mean. If this proportion is greater than or equal to
µe, the result is calculated from a straightforward normal
distribution. Otherwise, the result is exactly the value of a
standard normal distribution evaluated at its mean.

This value is then normalised so as to ensure the new
distribution’s integral to again sum to 1 by dividing by
the factor Enorm, defined in Eqn (7) as the sum of two
terms. 1

2 is the area of the standard normal distribution
greater than the mean, and µe

σe
N1(µe, σe, µe) is the area of

the rectangle formed by extending the peak of the standard
normal distribution to the left until the value correspond-
ing to 0 from the non-standardised normal distribution, as
values less than this correspond to a negative σ(t), which
is not possible.

2.4 Search Space Reduction

We use a modified Viterbi search to perform inference on
our model, using a beam search where at each step we save
only the B most probable hypothesis states (not including
those still at S0 with no tatums yet).

For the transition from S0 to S1, we introduce two
heuristics: (1) the first tatum in S1 must lie exactly on
the onset of the first observed note and (2) the last tatum
in S1 must also lie exactly on a note onset, though which
note specifically is not restricted by any means other than

limiting the tempo of the first bar using tmin and tmax.
According to these heuristics, for each S0, the supervisor
creates the observed note set for every possible S1. Al-
lowed times for the tatums in S1.t are also restricted based
on each observed note set N1. Essentially, all tatums are
placed evenly unless there is a specific reason not to (i.e.,
unless a note onset lies close to a tatum).

Specifically, a given value for S1.t is legal if it can ever
be generated by the following procedure. First, the appro-
priate number of beats (according to a given state’s metri-
cal hierarchy) are placed between the first and last tatum
times, as if each tatum was evenly spaced. Next, each
placed beat—excluding the last beat as well as the first—
may be shifted to the location of any note whose onset time
is within half of one sub beat length of the original beat lo-
cation. Each beat (again excluding the first and last as ap-
propriate) may then be nudged up to half of a tatum length
around its location with a magnetism of Mb, as shown in
Eqn (8). Here, t is the original time of the beat, M is the
magnetism (Mb in this case) which is used to control how
far the beat is nudged, and N is the set of notes which lie
within the given window. This equation can always return
the original time, though it is also allowed to nudge the
given time towards either the onset time of the closest note
(closest(N)) or the average onset time of all notes within
the window (avg(N)), if N is large enough. Sub beats are
placed similarly: initially evenly between any of the exist-
ing beats, then nudged up to one tatum length around its
location with magnetism Msb. Notice that the sub beats
are not shifted. Finally, tatums are placed evenly between
the sub beats (and neither shifted nor nudged).

nudge(t,M,N) =


t always

t+M(closest(N)− t) |N | > 0

t+M(avg(N)− t) |N | > 1
(8)

Allowed times for the tatums in Si.t for i > 1 are re-
stricted to those which can be generated by the same proce-
dure, with the exception that the final beat in Si.tmay now
be shifted and nudged. Initial beat locations are calculated
such that T (Si−1) = T (Si).

Intuitively, this process of shifting and nudging allows a
hypothesis’ tempo to smoothly increase or decrease based
on the observed notes. Beats are allowed to change the
tempo more drastically than sub beats because they are
more salient, and more likely to align with note onsets.

Even with the above restrictions, the search space is
still large. As mentioned we use a beam search, where
at each step we save only the top B most probable hypoth-
esis states (not including those still at S0 with no tatums
yet). Before we remove those hypotheses which fall out-
side the beam, we remove hypotheses which are deemed
to be too close to another more probable hypothesis based
on a threshold ∆min. Specifically, a hypothesis which has
identical metrical hierarchy to a more probable hypothe-
sis, and whose tempo and most recent tatum time both lie
within ∆min of that other hypothesis’ tempo and most re-
cent tatum time is removed.
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2.5 Supervisor

It is important to note that due to the way in which the
observed note sets are grouped by bar, the individual note
sets for different paths through the HMM state space for
a given piece will not be identical, although the union of
all note sets on any given path equals exactly the set of
notes present in the piece. To handle this complication, we
introduce a supervisor during the HMM decoding process
which takes each note individually in onset order, grouping
them into note sets and passing the sets to the appropriate
hypothesis state at each step. Specifically, for a given hy-
pothesis state, the supervisor determines the longest and
shortest possible lengths for the following bar (based on
allowed shifts and nudges as described in the previous sec-
tion). Then, it creates every possible note set given those
bounds, and allows the hypothesis state to transition and
branch on each of those note sets.

2.6 Optimisations

Here we describe two changes used to make our model
more robust in regards to the idiosyncrasies of live perfor-
mance such as staccato and ornamentation.

For handling staccato notes which are much shorter than
their note values would suggest in the score, we extend
each note’s offset until either the onset of the following
note in the bar within its voice (if one exists), or to the
end of its bar. This allows the LPCFG, which is trained on
metronomic MIDI where staccato is not present, to better
recognise the rhythms present in live performance.

For handling ornamentation such as trills, we use a
threshold trillmax. Any note whose onset time is within
trillmax of the onset time of the previous note within its
voice is removed (though the removed notes are still used
when deciding whether to remove the subsequent note).
The overall effect of this process is that trills or any very
fast ornamentation (which again would not be present in
the LPCFG’s training data) are reduced to a single short
note with its onset at the start of the trill or ornamentation.
If this optimisation is used in conjunction with the extend
notes optimisation, the remaining notes are extended only
after trills and ornamentation are removed, and the result is
that a fast ornamentation is replaced by a single long note.

3. EVALUATION

3.1 Corpora

For evaluation, we use two corpora: one containing
metronomic MIDI files of the 48 fugues from Bach’s
Well-Tempered Clavier (WTC) 2 and Bach’s 15 Inven-
tions, 3 and another of 13 live performance MIDI files of
Bach’s fugues and preludes from the WTC, from Crest-
MusePEDB 4 [10]. For training, we also use the miscel-
laneous corpus, released and used by [20] for training, di-
vided into a live performance portion (containing 22 pieces

2 The fugues were acquired from www.musedata.org.
3 The inventions were acquired from www.imslp.org.
4 We do not include the 13th prelude from WTC Book I due to an error

in the file.

by various composers recorded from a MIDI keyboard)
and a metronomic portion (containing 45 non-performed
pieces by various composers). For voice assignments in all
corpora, we run [12] as a preprocessing step.

3.2 Training

To train most of the parameters for the beat tracking model,
we measure statistics from the live performance portion of
the miscellaneous corpus. This results in values of µt0 =
1.0885 s, σt0 = 709.918 ms, σt = 0.0743, µe = 0.0181,
σe = 0.0336, σn = 6.655 ms, tmin = 0.4 s, and tmax =
3 s.

The remaining parameters are set in an ad hoc fashion
through testing on the miscellaneous corpus, and we have
found our model’s performance not to be very sensitive to
the precise values used. Specifically, we use Mb = 1.0,
Msb = 0.5, and trillmax = 0.1 s. ∆min and B are sim-
ply optimisations used to improve the speed of our model,
and we use values of 1 ms and 200 respectively, though in
practice, lower values of ∆min or higher values of B only
improve our model’s performance.

For our standard evaluation, we train the LPCFG’s
probabilities from the metronomic portion of the miscel-
laneous corpus, since this allows for a direct comparison
with the model of [20]. However, it is noted in [13] that
the grammar is sensitive to a lack of training data, partic-
ularly a lack of training data in the style of the evaluation
corpus, which happens when training on the miscellaneous
corpus for evaluation on Bach compositions. To investi-
gate this further, we also run experiments when training the
LPCFG’s probabilities on a superset containing the metro-
nomic portion of the miscellaneous corpus as well as the
entire metronomic corpus of Bach compositions. Note that
when evaluating this version of our model, we leave out the
piece currently being evaluated from the grammar’s train-
ing set so as to avoid overfitting. In all experiments, we
train the LPCFG with data that has undergone the same
optimisations as the data to be evaluated (in terms of ex-
tending notes and removing trills and ornamentation).

3.3 Metric

Quantitative evaluation of previous work on meter align-
ment, particularly with MIDI data, is uncommon, and a
few possible metrics are discussed in [18]. [20] reports
five values which take into account tempo, phase, and the
branching factor at each level of the metrical tree. Work
on acoustic meter detection (e.g. [11]) often reports F-
measures of beats and downbeats, treated as points in time.

To evaluate our model’s performance, we would rather
use a metric similar to that from [13] which is a single
value, takes into account the tree structure’s groupings
(rather than just its beat locations), and has some idea of
the partial correctness of a metrical alignment. However,
as it is designed for use mainly on beat-aligned data where
a metrical hypothesis cannot move in and out of phase
throughout a piece, a few adjustments must be made to
adapt it for use on live performance data. We call our
newly designed evaluation metric the metrical F-measure.
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Method Metronomic Live Performance
Temperley [20] 67.65 47.62
This Work 78.71 39.63
+T 75.36 39.40
+X 79.89 45.27
+X +T 77.67 47.81
+Bach 80.48 38.21
+Bach +T 80.08 42.35
+Bach +X 80.50 55.43
+Bach +X +T 80.48 56.51

Table 1. The average metrical F-measure of our method
compared against those of [20] on our two corpora. +T
indicates use of the remove trills and ornamentation opti-
misation, +X indicates use of the extend notes optimisa-
tion, and +Bach indicates using the additional Bach train-
ing data for the LPCFG.

It takes into account every grouping at three levels of the
metrical hierarchy throughout an entire piece: the sub beat
level, the beat level, and the bar level.

For each hypothesised grouping at these metrical levels,
we check if it matches a ground truth grouping. A hypoth-
esised grouping is said to match a ground truth grouping if
its beginning and ending times are each within 70 ms of
the beginning and ending times of that particular ground
truth grouping, regardless of the metrical level of either
grouping. 5 Each matched pair of groupings within a piece
count as a true positive, while any unmatched hypothe-
sis groupings count as false positives, and any unmatched
ground truth groupings count as false negatives. The metri-
cal F-measure of a piece is then calculated as the harmonic
mean of precision and recall as usual, and our reported re-
sults average these metrical F-measures across all songs in
each corpus.

3.4 Results

We compare our model against that of Temperley [20],
which is trained entirely on the miscellaneous corpus. For
direct comparison, the standard version of our model is
trained on the same corpus, but we present an evaluation
of a few different versions of it based on different optimi-
sations or training data. Results can be found in Table 1,
where +T indicates use of the remove trills and ornamen-
tation optimisation, +X indicates use of the extend notes
optimisation, and +Bach indicates that the LPCFG training
was augmented with the additional Bach compositions. We
do not also augment Temperley’s model with additional
training data because there is no straightforward way to
do so, and the model does not seem to be one which would
be as sensitive to a lack of training data as our model.

The results show that on metronomic data, our model
without optimisations clearly outperforms Temperley’s
when using identical training data. The optimisations offer
no significant improvement (which is unsurprising as they
were designed specifically to help with live performance),

5 This 70 ms window is taken directly from a popular beat tracking
metric [6].

+Bach +X +T
Bar:

Beat:
Sub beat:

Temperley
Bar:

Beat:
Sub beat:

Figure 2. The first bar of the 1st prelude from WTC Book
I (BWV 846). Above the music, the results from Temper-
ley’s model (bottom) are shown as well as the results from
our +Bach +X +T model (top).

but augmented training data leads to a small but consis-
tent increase in performance across all optimisation con-
figurations. On live performance, our model without opti-
misations underperforms Temperley’s, both with and with-
out augmented training data. However, the optimisations
lead to increased performance: our model using both opti-
misations matches Temperley’s performance with identical
training data, and exceeds it by almost 9 points with aug-
mented training data. The effect of each optimisation is
discussed in detail in Section 3.4.1.

The distribution of metrical F-measures for Temper-
ley’s model, run on live performance data, appears to be
binomial: of the 13 pieces, three score below 20, while
six score above 55, indicating that while the model per-
forms well in general, it sometimes guesses a meter which
is nearly entirely incorrect. With both optimisations, on
the other hand, our model’s scores are normally distributed
around 65, with 8 pieces scoring between 55 and 75. Ad-
ditionally, no pieces score below 20, indicating that it is
more likely to make some partially correct guess, even if
it is not entirely correct. The 1st prelude from WTC Book
I illustrates this difference in performance, and its first bar
is shown in Figure 2 along with the results of Temperley’s
model and our +Bach +X +T model. The piece is in 4

4 time,
and Temperley’s model achieves a score of only 15.74,
guessing a 3

8 time whose beats are even out of phase with
the ground truth sub beats throughout much of the piece.
On the other hand, our model scores 93.27, guessing a 4

4

time which begins perfectly aligned, although it does shift
slightly out of phase later in the piece.

One example of a piece for which Temperley’s model
outperforms ours is the 2nd prelude of WTC Book II,
the first bar of which is shown in Figure 3 along with
the results of Temperley’s model and our +Bach +X +T
model. For this piece, Temperley’s model achieves a score
of 78.99 while ours only manages a score of 61.83. This
piece is in 4

4 time and contains relatively non-syncopated
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+Bach +X +T
Bar:

Beat:
Sub beat:

Temperley
Bar:

Beat:
Sub beat:

Figure 3. The first bar of the 2nd prelude from WTC Book
II (BWV 871), showing an example the nearly isochronous
bars which give our model problems. Above the music,
the results from Temperley’s model (bottom) are shown as
well as the results from our +Bach +X +T model (top).

rhythms, with many bars containing either only sixteenth
notes or only eighth notes in a given voice, as can be seen
in the figure. While Temperley’s model captures this me-
ter correctly (with some phase errors), our model guesses
a 4

4 time which is early by a single beat. Our model has
some difficulty finding the correct phase of isochronous
melodies since it uses no pitch or harmonic information
(which are the most salient indicators of metrical phase in
such isochronous pieces). Temperley’s model, on the other
hand, also includes chord detection, allowing it to better
handle such melodies.

3.4.1 Optimisations

Another aspect of our model to investigate is the effect of
the different optimisations on its performance. As can be
seen from Table 1, they (+X and +T) have little effect on
metronomic data (which is not surprising given that they
are designed specifically for live performance). However,
on live performance data, they improve performance sig-
nificantly. Both with and without augmented training data,
the remove trills optimisation has a small effect by itself
(essentially none without the data and very small with it),
but extending notes leads to a significant improvement.
The combination of both optimisations improves perfor-
mance even further, leading to peak performance both with
and without augmented training data.

One specific example where the remove trills optimisa-
tion leads to improvement with augmented training data is
on the 7th fugue from WTC Book I, where our +Bach and
+Bach +T models achieve scores of 31.58 and 60.20 re-
spectively. There is a repeated trill throughout this piece,
leading the +Bach model to lengthen its beat length such
that the trill is interpreted as 16th notes. With the remove
trills optimisation, however, our model is able to find the
correct metrical structure. Essentially, the remove trills op-
timisation frees our model from the constraint of trying to
align its tatums with each note in a trill or ornamentation.

An example of a piece for which the extend notes opti-

misation makes an improvement is the 17th prelude from
WTC Book I. In this piece, in 3

4 time, the lowest voice has a
very common repeated rhythm of an eighth note followed
by two sixteenth notes followed by four more eighth notes,
where the eighth notes are all played staccato. With the
optimisation, our model correctly recognises the beat and
sub beat levels, although it incorrectly guesses 2

4 time rather
than the correct 3

4 time, scoring 53.59. Without the op-
timisation, on the other hand, these eighth notes are not
as salient, and the model instead guesses a 2

2 meter which
moves in and out of phase throughout the piece, achieving
a score of only 16.47. Throughout the corpus, the extend
notes optimisation helps find strong notes whenever they
are played staccato.

The combination of both optimisations improves over-
all performance even further, enabling the model to han-
dle both staccato passages and ornamentation. The im-
provements from both optimisations are seen in the fully
optimised model, alongside other slight improvements
throughout the corpus such as fixing the placement of a
single misaligned beat here or there. For example, in the
previously discussed 17th prelude from WTC Book I, the
fully optimised model achieves a metrical F-measure of
60.35 while no other model eclipses a score of 54, even
though the basic metrical alignment (a 2

4 meter) does not
change between the it and the +Bach +X model.

4. CONCLUSION

In this paper, we have described a model for metrical struc-
ture detection and alignment from live performance MIDI.

Our model is in the form of an HMM which performs
metrical structure detection and alignment given only a
list of note pitches and onset and offset times, and we
have shown that the model achieves state-of-the-art per-
formance when evaluated on a corpus of metronomic data,
as well as a second corpus of live performance data. The
HMM incorporates a rhythmic grammar as one compo-
nent, working with the grammar to align an input piece
with a metrical structure. This joint model is probabilis-
tic and incremental, and requires no information a priori
except for note onset and offset times. We have also pro-
posed a new metric for the task, which takes into account
vertical misalignments (for example, those which align the
beat level of a piece with bars) and partial correctness.

In future work, we would like to extend the evaluation
of our model with more data. In particular, our corpus of
13 pieces of live performance MIDI would benefit from an
expansion, and allow us to perform a more in-depth analy-
sis of the results.

Metrical structure detection and alignment is clearly an
important task for any complete transcription system, and
we have shown that our joint model is able to perform the
task well, even using only rhythmic data. Incorporating ad-
ditional information such as pitch or harmony should only
lead to better performance. Specifically, it has been shown
that harmonic changes are most likely to occur at the begin-
nings of bars [16], and low notes may be a salient feature
of strong beats in addition to note duration [5].
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