
MATRIX CO-FACTORIZATION FOR COLD-START RECOMMENDATION

Olivier Gouvert1 Thomas Oberlin1 Cédric Févotte1
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ABSTRACT

Song recommendation from listening counts is now a clas-
sical problem, addressed by different kinds of collabora-
tive filtering (CF) techniques. Among them, Poisson ma-
trix factorization (PMF) has raised a lot of interest, since
it seems well-suited to the implicit data provided by listen-
ing counts. Additionally, it has proven to achieve state-of-
the-art performance while being scalable to big data. Yet,
CF suffers from a critical issue, usually called cold-start
problem: the system cannot recommend new songs, i.e.,
songs which have never been listened to. To alleviate this,
one should complement the listening counts with another
modality. This paper proposes a multi-modal extension of
PMF applied to listening counts and tag labels extracted
from the Million Song Dataset. In our model, every song is
represented by the same activation pattern in each modality
but with possibly different scales. As such, the method is
not prone to the cold-start problem, i.e., it can learn from a
single modality when the other one is not informative. Our
model is symmetric (it equally uses both modalities) and
we evaluate it on two tasks: new songs recommendation
and tag labeling.

1. INTRODUCTION

New albums and songs are released every day and are in-
stantly available on streaming platforms. An important is-
sue for streaming companies is therefore to develop rec-
ommender systems which are able to handle such new
songs [13, 20]. More generally, additional information on
those songs is needed to enrich the catalog, allowing the
user to efficiently explore and find the songs he might like.
In this perspective, tag labeling has proven to be very use-
ful. The labels can be attributed by experts or by the user,
and algorithms can complement this information with au-
tomatic labeling [7].

For both tasks (song recommendation and tag label-
ing), matrix factorization (MF) techniques [12, 17], and
in particular Poisson MF (PMF), reach significant perfor-
mance. Unfortunately, these techniques suffer from the
well-known cold-start problem: such a recommender sys-
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tem cannot recommend songs which have never been lis-
tened to, and similarly it cannot labeled untagged songs.
A joint modeling of both modalities can achieve cold-start
recommendation, as soon as at least one modality is ob-
served for every song [8, 22].

In this paper, we propose a new matrix co-factorization
model based on PMF, which performs those two tasks
jointly. Our model is robust to the cold-start problem for
both modalities. It can recommend a song which has never
been listened to, based on its associate tags. And symmet-
rically, it can associate tags on a song based on who lis-
tened to it. To do that, we separately model the scale (pop-
ularity) of each song according to each modality, while the
patterns across the topics are shared.

The state of the art of co-factorization techniques is
presented in Section 2, along with some background on
PMF. Then, in Section 3 we will present our new model
and explain its properties. In Section 4, we provide
a majorization-minimization (MM) algorithm for solving
our optimization problem and underline its scalability. Fi-
nally, in Section 5, we test our model on songs recommen-
dation and tag labeling in various settings.

2. RELATED WORKS

In this paper, we will focus on works based on so-called
hybrid techniques [1] and Poisson matrix factorization.
Note that recommendation tasks can also be addressed
with other techniques such as factorization machines [19].

2.1 Poisson matrix factorization

PMF is a non-negative MF (NMF) technique [14]. Let Y
be a matrix of size F × I , where each column represent
an item (song) i according to F features. MF approxi-
mates the observed matrix Y by a low-rank product of two
matrices: Y ≈ WHT , where W ∈ RF×K

+ represents a
dictionary matrix, and H ∈ RI×K+ represents a matrix of
attributes (activations), with K � min(F, I).

When observed data are in the form of counts, i.e.,
Y ∈ NF×I , a classical hypothesis is to assume that each
observation is drawn from a Poisson distribution:

yfi ∼ Poisson([WHT ]fi). (1)

The maximum likelihood (ML) estimator of W and H
is therefore obtained by minimizing the cost function de-
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fined by:

C(W,H) = − log p(Y|W,H)

= DKL(Y |WHT ) + cst (2)

s.t. W ≥ 0, H ≥ 0,

where cst is a constant w.r.t. W and H, and whereDKL is
the generalized Kullback-Liebler (KL) divergence defined
by:

DKL(Y|X) =
∑
f,i

(
yfi log

yfi
xfi
− yfi + xfi

)
. (3)

This low-rank approximation is known as KL non-
negative matrix factorization (KL-NMF) [9, 15].

The cost function C is scale invariant, i.e., for any
diagonal non-singular matrix Λ ∈ RK×K

+ , we have
C(W,H) = C(WΛ−1,HΛ). To avoid degenerate solu-
tions, a renormalization such that

∑
f wfk = F is often

used, where wfk = [W]fk.
Several extensions based on Bayesian formulations

have been proposed in the literature [3,5,6,10,17]. In [10],
the authors developed a hierarchical Poisson factorization
(HPF) by introducing new variables: the popularity of the
items and the activity of the users. These variables play a
significant role in recommendation tasks.

2.2 Co-factorization

A way of circumventing the cold-start problem is to intro-
duce new modalities [8, 11, 16]. Co-factorization frame-
works have been developed to jointly factorize two matri-
ces of observations (two modalities): YA ≈ WA(HA)T

and YB ≈WB(HB)T , with shared information between
the activation matrices: HA ≈ HB .

2.2.1 Hard co-factorization

Hard co-factorization [8, 21] posits that the link between
activations is an equality constraint: HA = HB = H.
This is equivalent to concatenate the observations YA and
YB , and the dictionaries WA and WB :

DKL(YA|WAHT ) + γDKL(YB |WBHT )

= DKL

((
YA

γYB

)
|
(

WA

γWB

)
HT

)
, (4)

where γ ∈ R+ is a weighting hyperparameter.
As in Section 2.1, scale invariance issues can

be solved by a renormalization step such that:∑
u w

A
uk + γ

∑
v w

B
vk = U + V .

2.2.2 Soft co-factorization

Soft co-factorization [21] relaxes the equality constraint on
the activations replacing it by a soft penalty controlled by
an hyperparameter δ ∈ R+:

DKL(YA|WA(HA)T ) + γDKL(YB |WB(HB)T )

+δ Pen(HA,HB). (5)

A popular choice for this penalty is the `1-norm:
Pen(HA,HB) =

∥∥HA −HB
∥∥
1
. It is adapted when both

modalities are likely to share the same activations, except
at some sparse locations where they can differ significantly.

2.2.3 Offset models

Bayesian formulations of the soft co-factorization problem
have also been developed through the introduction of an
offset latent variable [11,22]. The link between activations
is therefore given by:

hBik = hAik + εik, (6)

where ε is a latent random variable.
In particular in [11], a co-factorization model is devel-

oped based on PMF, with εik ∼ Gamma(α, β). This
choice is motivated by the conjugacy propriety of the
gamma distribution with the Poisson distribution. Never-
theless, the model is not symmetric with respect to (w.r.t.)
the activations HA and HB , as hBik > hAik by construc-
tion. Thus, it can solve the cold-start problem only for the
modality A and not for B.

3. PROPOSED MODEL

3.1 Notations

In this article, we work with two different modalities. The
first modality, denoted by A, corresponds to the listening
counts of U users on I songs. The second modality, de-
noted by B, corresponds to the tags assigned to these I
songs, among a set of V tags. WA and WB thus denote
the preferences of users and the atoms of tags across theK
patterns, respectively.

3.2 Link between attributes

We propose an equality constraint on normalized activa-
tions. We denote by nAi =

∑
k h

A
ik and nBi =

∑
k h

B
ik, the

sum of the rows of the activations. We impose, for each
item i:

hAik
nAi

=
hBik
nBi

= dik, (7)

when nAi > 0 and nBi > 0.

• The I × K matrix D with entries dik controls
the attributes patterns subject to the constraint∑
k dik = 1. This information is shared by activa-

tions of both modalities. For example, the K pat-
terns can be related to genre information: we ex-
pect that experimental rock songs share the same
patterns.

• NA = diag(nAi ) controls the scale of songs across
the modality A. It corresponds to the popularity of
the song, in the sense that a lot of people listen to it.

• NB = diag(nBi ) controls the scale of songs across
the modality B. It corresponds to the fact that a song
can have more or less tag labels.
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Two songs can have the same attributes patterns D but
different scales. For example, a song i can be a very pop-
ular song, known by a large panel of people: nAi � 0, but
lack tag labeling: nBi ≈ 0. On the contrary, another song i
can be unpopular (because it is new or not well-received):
nAi ≈ 0, but have a lot of tag information (a set of experts
may have labeled the song): nBi � 0.

The counterpart of Equation (2) is the following cost
function C, which we aim to minimize:

C(WA,WB ,D,NA,NB) (8)

= DKL(YA |WA(NAD)T )

+ γDKL(YB |WB(NBD)T )

s.t. WA ≥ 0, WB ≥ 0, D ≥ 0,

diag(NA) ≥ 0, diag(NB) ≥ 0.

We denote by Z = {WA,WB ,NA,NB ,D} the set of
variables to infer.

3.3 Scale invariance

Let Θ = diag(θi) be a diagonal matrix of size I × I with
non-negative entries. We have the following scale invari-
ance:

C(WA,WB ,Θ−1D,NAΘ,NBΘ)

= C(WA,WB ,D,NA,NB). (9)

This scale invariance allows us to impose the constraint on
D, described in Section 3, by applying a renormalization
step (see Section 4.2).

Let Λ = diag(λk) be a diagonal matrix of sizeK×K with
non-negative entries, W̄A = WAΛ−1, W̄B = WBΛ−1

and D̄ = DΛ. We also have the following scale invari-
ance:

C(W̄A,W̄B , D̄,NA,NB)

= C(WA,WB ,D,NA,NB). (10)

In practice, this invariance is not an issue and we do not
apply a renormalization step. However, this kind of invari-
ance plays a role for the scores used in recommendation as
discussed in Section 3.4.

3.4 Recommendation tasks

In recommender systems, a classical problem is to propose
a ranked list of songs, users or tags. We develop how to
construct this list on two tasks: in- and out-prediction.

3.4.1 In-matrix recommendation

In-matrix recommendation is a task of recommendation on
users and items which do not suffer from the cold-start
problem. For in-matrix recommendation, we propose a
ranked list of songs for each user, based on the score de-
fined by:

sAui =
∑
k

wAukh
A
ik. (11)

This score and our cost function C have the same scale
invariance described in Eq. 10.

3.4.2 Cold-start (out-matrix) recommendation

Cold-start (or out-matrix) recommendation is a task of rec-
ommendation on items which suffer from the cold-start
problem (on modality A or B). In this section, we take the
example of a cold-start problem on modality A, i.e., the
song has no information in the modality A (nobody has
listened to this song yet) but has tags associated to it. The
following remark would hold for a cold-start problem on
modality B.

For cold-start (out-matrix) recommendation the score is
defined by:

sAui =
∑
k

wAukdik =
∑
k

wAuk
hAik∑
l h
A
il

. (12)

Contrary to in-prediction, we use D and not HA = NAD
since the popularity in the modality A is close to zero for
songs with no information, i.e., nAi ≈ 0.

This score and the cost function C do not have the same
scale invariance described in Eq. 10. In fact, if we denote
w̄Auk = λkw

A
uk and h̄Aik = λkh

A
ik, we have:

s̄Aui =
∑
k

w̄Auk
h̄Aik∑
l h̄
A
il

= sAui

∑
k h

A
ik∑

k λkh
A
ik

= sAuici, (13)

where ci =
∑

k h
A
ik∑

k λkhA
ik

.

This means that, if we want to rank the different scores
sAui, we have to do it for a fixed item. Therefore, to properly
evaluate the cold-start problem for songs, we will propose
a ranked list of users (or tags), for a given item.

For a streaming company, it corresponds to obtaining
a ranked list of users which are likely to listen to this new
song, or a ranked list of tags which corresponds to the song.

4. OPTIMIZATION

4.1 Auxiliary function

The objective function C has no closed-form minimum
and is not convex. We use a MM algorithm [9] to reach
a local minimum. The MM algorithms start by design-
ing a majorizing surrogate G of the objective function
C(Z) ≤ G(Z | Z̃) which is tight at the current value Z̃,
i.e., C(Z̃) = G(Z̃ | Z̃).

We use Jensen inequality on terms of the form
log(

∑
i xi). We define:

φAuik =
w̃Aukd̃ik∑
k w̃

A
ukd̃ik

, cAuik = yAuiφ
A
uik, (14)

φBuik =
w̃Bukd̃ik∑
k w̃

B
ukd̃ik

, cBuik = yBuiφ
B
uik. (15)
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It leads to the following upper-bound:

G(Z | D̃,W̃A,W̃B) (16)

=
∑
uik

[
−cAuik log(wAukn

A
i dik) + wAukn

A
i dik

]
+ γ

∑
vik

[
−cBvik log(wBvkn

B
i dik) + wBvkn

B
i dik

]
+ cst.

4.2 Updates

The auxiliary functionG can be optimized by using a block
descent algorithm. At each iteration, we optimize one la-
tent variable, keeping all the others fixed. This technique
leads to four update rules described in the following.

• Variables WA and WB :

wAuk ←
∑
i c
A
uik∑

i n
A
i dik

; wBvk ←
∑
i c
B
vik∑

i n
B
i dik

(17)

• Variables NA and NB :

nAi ←
∑
u y

A
ui∑

uk w
A
ukdik

; nBi ←
∑
v y

B
vi∑

vk w
B
vkdik

(18)

• Variable D:

dik ←
∑
u c

A
uik + γ

∑
v c

B
vik

nAi
∑
u w

A
uk + γnBi

∑
v w

B
vk

(19)

As discussed in Section 3.3, we add a renormalization
step at the end of each iteration. The update is as follows:

θi =
∑
k

dik/I, (20)

D← Θ−1D; NA ← NAΘ; NB ← NBΘ. (21)

4.3 Algorithm

The complete algorithm is summarized in Algorithm 1.
Note that the inference only requires browsing the non-
zero data yAui > 0 and yBvi > 0, during the update of the
local variables cAuik and cBuik. Hence, our algorithm has the
same scalability as PMF, making it particularly well-suited
for processing huge sparse matrices, as it is the case in rec-
ommender systems (see Table 1).

The algorithm is stopped when the relative increment of
the cost function C is lower than a chosen parameter τ .

5. EXPERIMENTS

5.1 Experimental Setup

5.1.1 Datasets

We use two datasets extracted from the Million Song
Dataset (MSD) [2] and merge them on songs:

• The Taste Profile dataset provides listening counts of
1M users on 380k songs [18]. We select a subset of
the users and pre-process the data to remove users
and items with few information [16]. We keep only
users who listened to at least 20 songs, and songs
which have been listened to by at last 20 users.

Algorithm 1: MM Algorithm

Input : YA, YB , K, γ

Initialize: WA,WB ,NA,NB ,D
repeat

for each pair (u, i) such that yAui > 0: Eq. 14
for each pair (v, i) such that yBvi > 0: Eq. 15
for each user u and tag v: Eq. 17
for each item i: Eq. 18-19
normalization step: Eq. 21

until C converges;

Taste Profile Last.fm

# columns (songs) 15, 667 15, 667
# rows (users or tags) 16, 203 620
# non-zeros 792, 761 128, 652
% non-zeros 0.31% 1.32%

Table 1. Datasets structure after pre-processing.

• The Last.fm dataset provides tag labels for around
500k songs. These tags were extracted from the
Last.fm API [4]. Since the tags were collected via
user annotation, they are quite noisy. To avoid miss-
labeling in the train data, we pre-process it. We
keep only the 1000 most used tags in the whole
dataset. For each couple song-tag, a confidence rat-
ing is given by Last.fm, we keep only couples with
confidence higher than 10. Finally, we keep only
tags which appears at least in 20 songs. The top 10
of the tags in the dataset after the pre-processing are
shown in Table 2.

We binarize the two datasets. Structure of both datasets is
described in Table 1.

5.1.2 Evaluation metric: ranking prediction

In each experiment, we will propose a ranked list L of N
items (which can be songs, tags or users) and evaluate its
quality w.r.t. a ground-truth relevance. For this, we calcu-
late the discounted cumulative gain (DCG) and its normal-
ized version, the NDCG:

Tags Occ. Tags Occ.

rock 6703 electronic 2413
alternative 4949 female vocalists 2407
indie 4151 indie rock 2171
pop 3853 Love 1875
alternative rock 2854 singer-songwriter 1786

Table 2. Occurences (Occ.) of the top tags in the dataset
after pre-processing.
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Experiment OUT-A OUT-B IN-A

Score NDCG@20 NDCG@200 NDCG@1∗ NDCG@10 NDCG@100 NDCG∗∗

P-coNMF 0.0824
±1.48e−5

0.122
±1.33e−5

0.416
±5.85e−4

0.266
±1.59e−4

0.129
±4.24e−6

0.286
±2.82e−6

H-coNMF
0.0873
±1.39e−5

0.131
±2.21e−5

0.391
±1.73e−4

0.264
±1.00e−4

0.122
±5.72e−6

0.283
±2.96e−6

KL-NMF . . . .
0.163
±5.36e−7

0.313
±1.50e−7

Table 3. Performance of three models: P-coNMF, H-coNMF, KL-NMF, on three different tasks: out-matrix song recom-
mendation (OUT-A), tag labeling (OUT-B), in-matrix recommendation (IN-A). Each algorithm is run 5 times, the mean
and the variance of the NDCG metrics are displayed. ∗ NDCG@1 corresponds to the percentage of success on the first
predicted tag. ∗∗ NDCG is not truncated in this column, it is equivalent to chose N = I .

DCG@N =
N∑
n=1

rel(n)

log2(n+ 1)
, (22)

NDCG@N =
DCG@N

IDCG@N
, (23)

where rel(n) is the ground-truth relevance of the n-th item
in the list L. In the following, rel(n) = 1 if the item is
relevant and rel(n) = 0 if not.

The denominator of the DCG penalizes relevant items
which are at the end of the ranked list. It accounts for
the fact that a user will only browse the beginning of the
list, and will not pay attention to items which are ranked
at the end. IDCG is the ideal DCG. It corresponds to the
DCG score of an oracle which ranks perfectly the list, thus
scaling the NDCG between 0 and 1.

5.1.3 Compared methods

For each experiment, we will compare the performance of
our model, proportional co-factorization NMF (P-coNMF)
with two other methods:

• KL-NMF, presented in Section 2.1. It can only be
used for in-matrix prediction as it suffers from the
cold-start problem.

• Hard co-factorization (H-coNMF), presented in Sec-
tion 2.2.1), that use KL-NMF algorithm on concate-
nated matrix. For out-matrix prediction, we will use
a mask that indicates what columns are missing. The
objective function is then:

C(W,H) = DKL(X⊗Y |X⊗WHT ), (24)

where ⊗ is the elementwise multiplication, and X
is the mask. Note that the masked H-coNMF is ex-
pected to perform as good as soft coNMF with the
`1−norm, since it does not enforce common activa-
tion for new songs.

For both methods, we chose K = 100 latent factors.
The hyperparameter is set such that γ = U

V , which al-
lows to compensate for the size difference between the two
datasets (V � U ).

5.2 Cold-start recommendation

In this section, we evaluate our algorithm on cold-start rec-
ommendation tasks for both modalities A and B. For this,
we artificially replace columns of YA and YB by columns
full of zeros, in order to create the train datasets YA

train
and YB

train. It leads to 10% of songs with only listening
counts information, 10% of songs with only tag informa-
tion and 80% of songs with both informations. The re-
moved columns form the test datasets YA

test and YB
test.

For each song among the never-listened-to songs, we
want to find a set of users that is likely to listen to it.
We train all the algorithms on YA

train and YB
train. For each

song, we create a ranked list of users based on the score
defined in Section 3.4.2. We evaluate its relevance based
on the NDCG metrics with ground-relevance defined by:
rel(u, i) = 1(yAtest,ui > 0), where 1(x) is the indicator
function which is equal to 1 when x is true and 0 other-
wise.

Similarly, for each song among the untagged songs,
we want to find a set of tags that can annotate that
song. Then we propose a ranked list of tags and calcu-
late the NDCG score with ground-relevance defined by:
rel(v, i) = 1(yBtest,vi > 0).

The columns OUT-A and OUT-B of Table 3 present the
results of P-coNMF and H-coNMF on the two cold-start
problems. For recommending potential listeners (OUT-
A), H-coNMF seems to be slightly better than our method.
However, P-coNMF outperforms H-coNMF on tag label-
ing task. P-coNMF presents a success rate of 42% on the
first predicted tag. This is an acceptable rate since the tag
dataset is noisy: it has not been labeled by experts but by
users and presents some incoherences. For example, the
tag ’Hip-Hop’ can also be written ’hip hop’. More details
on tag labeling are provided in Section 5.4. Contrary to
H-coNMF, P-coNMF does not need a mask to know which
columns are missing. Additionally, the scale variables NA

and NB are able to explain different scalings of the same
song in the two datasets. This seems interesting because
the amount of listening counts and tags for the same song
is often highly different.
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FACTOR #94 FACTOR #29 FACTOR #30

Top tags

Hip-Hop
hip hop
classic
rap
Gangsta Rap

new wave
post-punk
Guilty Pleasures
intense
Post punk

experimental
Experimental Rock
Avant-Garde
noise
weird

Top songs
based on HA

Eminem - “Mockingbird”
Eminem - “Without Me”
Kid Cudi - “Day ’N’ Nite”
Kid Cudi - “Up Up & Away”
Kid Cudi - “Cudi Zone”

The Cure - “Boys Don’t Cry”
The Smiths - “There Is A Light [...]”
The Smiths - “This Charming Man”
The Smiths - “What Difference Does It Make?”
Wolfsheim - “Once In A Lifetime”

Animal Collective - “Fireworks”
Sigur Ros - “Staralfur”
Sonic Youth - “Youth Against Fascism”
Grizzly Bear - “Little Brother”
TV On The Radio - “Crying”

Top songs
based on D

DMX - “Where The Hood At”
Lil Jon - “Crunk Juice”
50 Cent - “Straight To The Bank”
Eminem - “The Kiss”
The Notorious B.I.G. - “Respect”

New Order - “The Perfect Kiss”
Talking Heads - “Burning Down The House”
Joy Division - “Disorder”
Tears For Fears - “Goodnight Song”
The Smiths - “Miserable Lie”

The Mars Volta - “Tira Me a Las Aranas”
Cocorosie - “Gallows”
The Mars Volta - “Concertina”
The Mars Volta - “Roulette Dares”
TV On The Radio - “Golden Age”

Table 4. Three examples of factors, with, for both of them, the 5 top tags associated to it, the 5 top songs associated to it,
with or without the notion of popularity.

5.3 In-matrix song recommendation

We also evaluate our algorithm on in-matrix prediction.
The goal is therefore to predict which songs a user is likely
to listen. There is no cold-start recommendation here, and
KL-NMF can be trained.

We artificially split the listening counts dataset in two.
20% of non-zero values of YA are removed to create the
test set YA

test. The 80% remaining form the train set YA
train

on which the different models are trained. Each method is
evaluated with NDCG metric. For each user, a list of songs
is proposed based on the score defined in Section 3.4.1,
among the songs he never listened to. The ground-truth
relevance is defined by rel(u, i) = 1(yAtest,ui > 0).

The results are presented in the third column (IN-A) of
Table 3. P-coNMF is slightly better than H-coNMF, but
we observe that KL-NMF achieves state-of-the-art perfor-
mance. This is not surprising, since adding information on
another modality (tags here) can be viewed as a regulariz-
ing term. We lose in precision in in-matrix recommenda-
tion task but we solve the cold-start problem. This seems
an interesting trade-off.

5.4 Exploratory Analysis

In Table 4, we present for each of the three factors
k ∈ {29, 30, 94}:

• in the first row, the tags which corresponds to the five
highest values of WB .

• in the second row, the songs which corresponds to
the five highest values of HA = NAD.

• in the third row, the songs which corresponds to the
five highest values of D.

The top tags associated to each factor are consistent: for
example, genre as ’new wave’ and ’post-punk’ are in the
same factor. The model is also robust to the different
spellings used by the users (’post-punk’ and ’Post punk’
for example). Then, we see that the top songs in each fac-
tor are related with the top tags. Eminem, 50 Cent and The

Notorious B.I.G. are rap artists. The Cure, The Smiths and
Joy Division are the leading figures of the new wave. TV
On The Radio, The Mars Volta and Animal Collective are
known to be experimental rock bands. Finally, we see that
the popularity of songs NA has an important influence on
the diversity of the top songs in each factor. When this no-
tion is removed (last row of the table), less popular songs
and bands appear in the top songs.

6. CONCLUSION

In this paper, we proposed a new Poisson matrix co-
factorization, in which the attributes of each modality are
assumed proportional. Contrary to hard and `1-based soft
co-factorization, in this new model each item may have
different scaling (or popularity) in each modality. This is
of particular interest when tackling cold-start recommen-
dation, in which one scaling is close to zero. The benefits
of the algorithm over standard co-factorization have been
illustrated for song recommendation, with emphasis placed
on cold-start situations.

This raised interesting short-term perspectives, such as
the derivation of more involved Bayesian models, and
inference or extensions to different, possibly non-binary
datasets. Future works should also consider datasets with
highly different dimensions or dynamics, by means of a
tri-factorization.
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