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ABSTRACT

Predominant instrument recognition in ensemble record-
ings remains a challenging task, particularly if closely-
related instruments such as alto and tenor saxophone need
to be distinguished. In this paper, we build upon a recently-
proposed instrument recognition algorithm based on a hy-
brid deep neural network: a combination of convolu-
tional and fully connected layers for learning character-
istic spectral-temporal patterns. We systematically eval-
uate harmonic/percussive and solo/accompaniment source
separation algorithms as pre-processing steps to reduce the
overlap among multiple instruments prior to the instrument
recognition step. For the particular use-case of solo in-
strument recognition in jazz ensemble recordings, we fur-
ther apply transfer learning techniques to fine-tune a previ-
ously trained instrument recognition model for classifying
six jazz solo instruments. Our results indicate that both
source separation as pre-processing step as well as trans-
fer learning clearly improve recognition performance, es-
pecially for smaller subsets of highly similar instruments.

1. INTRODUCTION

Automatic Instrument Recognition (AIR) is a fundamental
task in Music Information Retrieval (MIR) which aims at
identifying all participating music instruments in a given
recording. This information is valuable for a variety of
tasks such as automatic music transcription, source separa-
tion, music similarity computation, and music recommen-
dation, among others. In general, musical instruments can
be categorized based on their underlying sound production
mechanisms. However, various aspects of human music
performance such as dynamics, intonation, or vibrato cre-
ate a large timbral variety that complicate the distinction of
closely-related instruments such as a violin and a cello.

As part of the ISAD (Informed Sound Activity Detec-
tion in Music Recordings) research project, we aim at im-
proving existing methods for timbre description and instru-
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ment classification in ensemble music recordings. In par-
ticular, this paper focuses on the identification of predom-
inant solo instruments in multitimbral music recordings,
i. e., the most salient instruments in the audio mixture. This
assumes that the spectral-temporal envelopes that describe
the instrument’s timbre are dominant in the polyphonic
mixture [11]. As a particular use-case, we focus on the
classification of solo instruments in jazz ensemble record-
ings. Here, we study the task of instrument recognition
both on a class and sub-class level, e. g. between soprano,
alto, and tenor saxophone. Besides the high timbral sim-
ilarity between different saxophone types, a second chal-
lenge lies in the large variety of recording conditions that
heavily influence the overall sound of a recording [21, 25].
A system for jazz solo instrument classification could be
used for content-based metadata clean-up and enrichment
of jazz archives.

As the main contributions of this paper, we systemat-
ically evaluate two state-of-the-art source separation al-
gorithms as pre-processing steps to improve instrument
recognition (see Section 3). We extend and improve upon a
recently proposed hybrid neural network architecture (see
Figure 1) that combines convolutional layers for automatic
learning of spectral-temporal timbre features, and fully
connected layers for classification [28]. We further evalu-
ate transfer learning strategies to adapt a given neural net-
work model to more specific classification use-cases such
as jazz solo instrument classification, which require a more
granular level of detail [13].

2. RELATED WORK

The majority of work towards automatic instrument recog-
nition has focused on instrument classification of isolated
note events or monophonic phrases and melodies played
by single instruments. Considering classification scenarios
with more than 10 instrument classes, the best-performing
systems achieve recognition rates above 90%, as shown for
instance in [14, 27].

In polyphonic and multitimbral music recordings, how-
ever, AIR is a more complicated problem. Traditional ap-
proaches rely on hand-crafted audio features designed to
capture the most discriminative aspects of instrument tim-
bres. Such features are based on different signal represen-
tations based on cepstrum [8–10, 29], group delay [5], or
line spectral frequencies [18]. A classifier ensemble focus-
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Figure 1. Reference model proposed by Han et al. [28]. Time-frequency spectrogram patches are processed by successive
pairs of convolutional layers (Conv) with ReLU activation function (R), max pooling (MaxPool), and global max pooling
(GlobMaxPool). Dropout (D) is applied for regularization in the feature extractor and classifier. Conv layers have increasing
number of filters (32, 64, 128, and 256) and output shapes are specified for each layer.

ing on note-wise, frame-wise, and envelope-wise features
was proposed in [14]. We refer the reader to [11] for an
extensive overview of AIR algorithms that include hand-
crafted audio features.

Novel deep learning algorithms, particularly convolu-
tional neural networks (CNN), have been widely used for
various image recognition tasks [13]. As a consequence,
these methods were successfully adopted to MIR tasks
such as chord recognition [17] and music transcription [1],
where they significantly improved upon previous state-of-
the-art results. Similarly, the first successful AIR methods
based on deep learning were recently proposed and de-
signed from the combination of convolutional layers for
feature learning, and fully-connected layers for classifi-
cation [24, 28]. Park et al. use a CNN to recognize in-
struments using single tone recordings [24]. Han et al.
[28] propose a similar architecture and evaluate different
late-fusion results to obtain clip-wise instrument labels.
The authors aim at classifying predominant instruments in
polyphonic and multitimbral recordings, and improve upon
previous state-of-the-art systems by around 0.1 in f-score.
Li et al. [20] propose to use end-to-end learning, consid-
ering a different network architecture. By these means,
they use raw audio data as input without relying on spec-
tral transformations such as mel spectrograms.

A variety of pre-processing strategies have been been
applied MIR tasks such as singing voice detection [19] and
melody line estimation [26]. Regarding the AIR task, sev-
eral algorithms include a preceding source separation step.
In [2], Bosch et al. evaluate two segregation methods for
stereo recordings—a simple LRMS (Left/Right-Mid/Side)
separation and FASST (Flexible Audio Source Separation
Framework) developed by Ozerov et al. [22]. The authors
report improvements of 19% in f-score using a simple pan-
ning separation, and up to 32% when the model was trained
with previously separated audio, taking into account the
typical artifacts produced by source separation techniques.
Heittola et al. [16] propose a system that uses a source-
filter model for source separation in a non-negative matrix
factorization (NMF) scheme. The spectral basis functions
are constrained to have harmonic spectra with smooth fre-
quency responses. Using a Gaussian mixture model, the

authors achieved a 59% recognition rate for six polyphonic
notes randomly chosen from 19 different instruments.

3. PROCESSING STEPS

3.1 Baseline Instrument Recognition Framework

In this section, we briefly summarize the instrument recog-
nition model proposed by Han et al. [28], which we use
as the starting point for our experiments. As a first step,
monaural audio signals are processed at a sampling rate
of 22.05 kHz. A mel spectrogram with a window size of
1024, a hop size of 512, and 128 mel bands is then com-
puted. After applying a logarithmic magnitude compres-
sion, spectral patches one second long are used as input
to the deep neural network. The resulting time-frequency
patches have shape xi ∈ R128×43.

The network architecture is illustrated in Figure 1 and
consists of four pairs of convolutional layers with a filter
size of 3 × 3 and ReLU activation functions. The input
of each convolution layer is zero-padded with 1 × 1, con-
sidered in the output shape of each layer. The number of
filters in the conv layer pairs increases from 32 to 256.
Max pooling over both time and frequency is performed
between successive layer pairs. Dropout of 0.25 is used for
regularization. An intermediate global max pooling layer
and flatten layer (F) connect the feature extractor with the
classifier. Finally, a fully-connected layer (FC), dropout of
0.5, and a final output layer sigmoid activation (S) with 11
classes are used. The model was trained with a learning
rate of 0.001, a batch size of 128, and the Adam optimizer.

In the post-processing stage, Han et al. compare two ag-
gregation strategies to obtain class predictions on a audio
file level: first, they apply thresholds over averaged and
normalized segment-wise class predictions (S1 strategy).
Secondly, a sliding window of 6 segments and hop-size 3
segments is used for local aggregation prior to performing
S1 strategy (S2 strategy). Refer to [28] for the identifica-
tion threshold estimation. Apart from the model ensem-
bling step (which combines different predictors), we were
able to reproduce the evaluation results reported in [28], in
terms of recognition performance, intermediate activation
function (ReLU), and the optimal identification threshold
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Micro Averaging Macro Averaging

Method Model Ensembling Data set Activation
Function Agg. P R F P R F Opt.

θ

Baseline system [28] X IRMAS ReLU S2 0.657 0.603 0.629 0.540 0.547 0.517 0.55
Reproduction - IRMAS ReLU S1 0.591 0.548 0.568 0.530 0.477 0.471 0.40

ReLU S2 0.609 0.544 0.574 0.501 0.507 0.475 0.55
Experiment - MONOTIMBRAL LReLU S1 0.645 0.678 0.661 0.685 0.681 0.657 0.8

LReLU S2 0.619 0.695 0.655 0.657 0.690 0.649 0.7

Table 1. Performance metrics precision (P), recall (R), and F-score (F) from best results reported by [28], its reproduction
with the IRMAS data set, and an experiment with the MONOTIMBRAL data set. The displayed results are the best settings
obtained with respect to ReLU/LReLU activation functions, and S1/S2 aggregation strategies (see Section 3.1).

θ as shown in Table 1. Additionally, an experiment was
conducted using monotimbral audio as input data to train
the neural network. Following [28], we tested different
intermediate activation functions (ReLU and LReLU) and
both aggregation strategies. The monotimbral audio used
for this experiment is further explained in Section 4.2.

3.2 Source Separation

Motivated by the previous experiment, which showed that
recognition performance increases 5-10% by using mono-
timbral data as input, we explore the use of sound source
separation as a pre-processing stage to musical instrument
classification. The idea is to evaluate whether isolating the
desired instrument from the mixture can improve classi-
fication performance. This section briefly describes two
sound separation methods used in our experiments.

3.2.1 Phase-based Harmonic / Percussive Source
Separation

The harmonic-percussive separation described in [3] works
under the assumption that harmonic music instrument will
exhibit stable phase contours as the ones obtained by dif-
ferentiating the phase spectrogram in time. In contrast,
given the broadband and transient-like characteristics of
percussive instruments, this stability in phase cannot be ex-
pected. This system takes advantage of this fundamental
distinction between harmonic and percussive instruments,
and by calculating the expected phase change for a given
frequency bin and hop size, a separation mask is created
to extract harmonic components from the mix. The effects
of the harmonic-percussive separation can be observed in
Figure 2, where the spectrogram of the original audio mix-
ture and of the harmonic and percussive components are
displayed.

3.2.2 Pitch-Informed Solo/Accompaniment Separation

To extract solo instruments from multitimbral music, the
method proposed in [4] was also used in our experiments.
The system performs separation by first extracting pitch in-
formation from the solo instrument, and then closely track-
ing its harmonic components to create a spectral mask.
To extract pitch information, the method proposed in [7]
is used for main melody extraction. Pitch information is
extracted by performing a pair-wise evaluation of spectral
peaks, and by finding partials with well-defined frequency
ratios. The pitch information extracted is then used to
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Figure 2. Mel-spectrograms of the original audio
track, the harmonic/percussive components, and the
solo/accompaniment components for a jazz excerpt of a
saxophone solo played by John Coltrane. The audio mix-
ture contains the solo saxophone, piano, bass and drums.

track the harmonic components in the separation stage, us-
ing common amplitude modulation, inharmonicity, attack
length, and saliency as underlying concepts.

The performance of both the pitch detection and the
separation stage in this system highly depend on the mu-
sical instrument to be separated: for musical instruments
with clear, stable partials the separation performance can
be very good. This is the case of woodwinds and string in-
struments such as the violin. However, for musical instru-
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ments with a less stable spectral behavior such as the xylo-
phone, or instruments with strong distortion effects such as
electric guitars, separation can be noisy. The effects of the
solo/accompaniment separation can be observed in Figure
2, where the spectrogram of the original audio mixture and
of the solo and accompaniment components are displayed.
It can be seen that starting from 1.50 seconds, the solo in-
strument is not detected and hence, no energy is assigned
to the solo track.

3.3 Transfer Learning

For the special use-case of solo instrument recognition in
jazz ensemble recordings, we aim at training a recognition
model despite the small amount of available training data
(see the JAZZ data set in Section 4.3). Here, transfer learn-
ing can be applied to fine-tune an existing classification
model [13]. We assume that initially learnt feature rep-
resentations for predominant AIR are highly relevant and
therefore transferable for our use-case. Transfer learning
has been successfully used in MIR for the task of sound
event tagging in [6]. We refer the reader to [23] for a com-
prehensive overview of transfer learning in classification,
regression, and clustering applications.

4. DATA SETS

4.1 IRMAS

The IRMAS data set (Instrument Recognition in Music
Audio Signals) for predominant instrument recognition
was first introduced by Bosch et al. in [2]. It is partitioned
into separate training and test sets. The training set in-
cludes 6705 stereo audio files with a duration of 3 seconds
each, extracted from more than 2000 recordings. All the
recordings in the training data set are single-labeled and
have a single predominant instrument. The amount of au-
dio files per instrument is unevenly distributed and ranges
from 388 to 778. The test set consists of 2874 stereo audio
files with variable duration ranging from 5 to 20 seconds.
These recordings are multi-labeled and cover 1-5 instru-
ment labels per sample. The test set also shows a highly
uneven instrument distribution with 62 to 1044 audio files
per instrument class. As shown in Table 2, the data set con-
tains 11 musical instruments: cello, clarinet, flute, acoustic
guitar, electric guitar, organ, piano, saxophone, trumpet,
violin, and singing voice. In the experiments described in
Section 5.2.2, we use a subset denoted as IRMAS-Wind,
which includes all recordings of the wind instruments in
the IRMAS data set: flute, clarinet, saxophone, and trum-
pet. The motivation to create this subset is the improved
performance of the solo/accompaniment separation algo-
rithm (see section Section 3.2.1) and its timbral similar-
ity to the JAZZ data set to apply transfer learning strate-
gies (see Section 4.3). Following [28], training data was
randomly split to training (85%) and validation (15%) to
prevent overfitting by implementing early stopping. Test-
ing data was randomly split into development testing data
(50%) for optimum thresholding in post-processing, and

pure testing data (50%) to obtain the final performance
metrics (see Table 3).

Instrument IRMAS MONO. JAZZ

Class Subclass # h # h # h

Cello 499 0.87
Clarinet 567 0.71 26 0.32 31 0.53
Flute 614 1.17 29 0.42
Acoustic Guitar 1172 3.08 30 0.38
Electric Guitar 1702 5.00

Clean 28 0.43
Distorted 30 0.34

Organ 1043 2.25
Hammond Organ 30 0.44
Piano 1716 5.40 27 0.38
Electric Piano 29 0.31
Saxophone 952 2.16 29 0.34

Soprano 30 0.53
Alto 29 0.53
Tenor 32 0.53

Trombone 27 0.53
Trumpet 744 1.29 29 0.35 36 0.53
Violin 791 1.56 27 0.47
Voice 1822 5.38

Female 21 0.26
Male 20 0.26

Double Bass 27 0.28
Synthesizer 30 0.77

TOTAL 11622 28.87 412 5.75 185 3.18

Table 2. Overview of the three data sets IRMAS, MONO-
TIMBRAL, and JAZZ, which includes various instrument
classes and subclasses. Both the number of labels (#) and
the total duration in hours (h) is given for each data set.

4.2 MONOTIMBRAL

The MONOTIMBRAL data set includes monotimbral
(single-labeled) recordings, i. e., monophonic or poly-
phonic recordings without overlap of other instruments,
of 15 musical instrument classes: acoustic guitar, clarinet,
double bass, electric guitar clean, electric guitar distorted,
electric piano, flute, hammond organ, piano, saxophone,
female singing voice, male singing voice, synthesizer,
trumpet, and violin. The data set contains 412 stereo audio
files with variable duration from 10 to 120 seconds, man-
ually selected from various segments of YouTube videos.
The MONOTIMBRAL data set was randomly split equally
into a training and test set based on an equal distribution of
audio files per instrument class (see Table 3).

4.3 JAZZ

As one specific use-case, we aim at classifying among the
six most popular brass and reed instruments in jazz so-
los: trumpet (tp), clarinet (cl), trombone (tb), alto saxo-
phone (as), tenor saxophone (ts), and soprano saxophone
(ss). While the number of instruments is smaller com-
pared to the IRMAS and MONOTIMBRAL data sets, they
have a higher timbral similarity, considering particularly
the three saxophone subclasses. In order to prepare a data
set, we first randomly selected solos from the Weimar Jazz
Database [25] and enriched the data set with additional
jazz solos. While the number of instruments is smaller
compared to the IRMAS and MONOTIMBRAL data sets,
the audio samples were chosen to maximize diversity of
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performing artists. Moreover, examples from each class
were randomly selected to have the same duration (see
Table 2), achieving equal distribution of spectrogram ex-
amples across instrument classes. As with the other data
sets, the JAZZ data set split randomly as the other data sets
(see Table 3). Since jazz recordings cover many decades of
the 20th century, the instrument recognition task is further
complicated by different recording techniques.

For additional information regarding the MONOTIM-
BRAL and JAZZ data sets, refer to the complimentary
website for this paper [12].

Training Data Set (85/15) Testing Data Set (50/50)

Train Validation Development Pure

IRMAS 17094 3021 48064 48055
IRMAS-Wind 5486 970 10447 10446
Monotimbral 8676 1539 10620 10610

JAZZ 7206 1275 1678 1271

Table 3. Number of mel spectrogram examples for each
data set split into Train, Validation, Development, Pure
data sets.

5. EVALUATION

5.1 Metrics

Following [2, 11, 28], precision, recall, and f-scores were
calculated for both micro and macro averages. Micro aver-
aging gives more weight to instrument classes with higher
appearance in the data distribution. Macro averaging is
calculated per label, representing an overall performance
of the system.

5.2 Improving Predominant Instrument Recognition
using Source Separation

5.2.1 Harmonic / Percussive Separation

After processing the audio files with the har-
monic/percussive separation introduced in Section 3.2.1,
we first retrained the baseline model independently on the
harmonic stream and percussive stream. Furthermore, we
created a two-branch model that processes the harmonic
and percussive stream in parallel and fuses the results in
the final fully-connected layers, similar to [15]. As shown
in Figure 3, using the harmonic stream marginally im-
proved recognition results for both aggregation strategies
S1 and S2 by up to 3% in f-score for the multitimbral
IRMAS data set. In contrast, we did not observe an
improvement for the MONOTIMBRAL data set. Using
the two-branch model did not improve the performance on
the IRMAS data set and worsens the performance on the
MONOTIMBRAL data set.

5.2.2 Solo / Accompaniment Separation

The aim of performing this separation is to further im-
prove the quality of the input audio to the classifica-
tion system. All experiments described in this sec-
tion were performed on the IRMAS-Wind and the JAZZ
data sets (see Section 4), given the performance of the
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Figure 3. Comparison of the AIR system trained on the
harmonic stream and the baseline model trained with the
original IRMAS data set. Differences between evaluation
metrics are shown for both aggregation strategies S1 and
S2 (compare Section 3.1) as well as micro and macro av-
eraging (compare Section 5.1).

solo/accompaniment algorithm. Both data sets also have
similar timbral characteristics, which represents our tar-
geted scenario.

We compare AIR models trained on the original au-
dio tracks with models trained on the solo stream ob-
tained from the solo/accompaniment separation. As shown
in Table 4, applying the solo/accompaniment separation
as pre-processing step improves the AIR performance by
3.8% in macro f-score for the IRMAS-Wind data set and
13.4% for the JAZZ data set using the S1 strategy. Ad-
ditionally both micro and macro averages result in similar
values, given the even distribution of examples of the JAZZ
data set. The results might also indicate that error propa-
gation from transcription errors to the source separation
algorithm are not critical, since the instrument recognition
results are averaged over time and the approximate accu-
racy of the pitch detection algorithm is 80% [7].

F-Score

Data set S/A Separation Micro Macro

IRMAS-Wind - 0.684 0.598
IRMAS-Wind X 0.713 0.636

JAZZ - 0.657 0.669
JAZZ X 0.805 0.803

Table 4. Performance metrics obtained by training the
baseline model with the IRMAS-Wind and JAZZ data sets.
Best results were obtained using aggregation strategy S1.

5.3 Combining Source Separation and Transfer
Learning for Jazz Solo Instrument Recognition

For our final use-case of recognizing jazz solo instru-
ments, we aim at combining solo/accompaniment sepa-
ration and transfer learning strategies. We use the mod-
els trained on the IRMAS-Wind data set (with and with-
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out solo/accompaniment separation) as starting point for
the transfer learning approach. All models were trained
from scratch following the original parameters from [28].
The JAZZ data set includes recordings from trombone and
three saxophone subclasses: tenor, alto, and soprano. Ad-
ditionally, the trumpet and the clarinet classes were already
included in the IRMAS-Wind data set. One main challenge
is that while the characteristics of the predominant melody
instruments in the IRMAS and JAZZ data sets are similar,
the background instrumentation and recording conditions
are often very different. We remove the last sigmoid layers
of models pre-trained with the IRMAS-Wind data set and
replace them by a 6-class sigmoid layer, considering the
JAZZ data set. For testing, we compare two approaches:
(1) the one-pass method which re-trains the last classifi-
cation layer using a learning rate of α = 0.01 (10 times
the original learning rate), while all remaining layers re-
main fixed, and (2) the two-pass approach where we further
re-train all layers in a second training step with a smaller
learning rate of α = 0.001. Table 5 shows the classifica-
tion performance on the JAZZ data set for different system
configurations with the one-pass and two-pass strategies,
as well as with and without the solo/accompaniment sepa-
ration. The best performance was achieved by combining
solo/accompaniment separation and the two-pass transfer
learning strategy.

F-score

S/A Separation Transfer Learning Micro Macro

- One-pass 0.605 0.621
X One-pass 0.738 0.748
- Two-pass 0.583 0.610
X Two-pass 0.787 0.780

X - 0.805 0.803

Table 5. Performance metrics obtained by combining
solo/accompaniment separation with transfer learning on
the JAZZ data set. The results obtained by training the
model from scratch (without transfer learning) are also
shown in the bottom row for reference. Best results were
obtained using aggregation strategy S1.

It can also be observed that the transfer learning
model shows a lower macro f-measure of 0.780 than the
model trained from scratch with 0.803 (see bottom row
of Table 5). To further understand this behavior, six ad-
ditional 10 s (unseen) jazz solo excerpts 1 were analyzed.
Figure 4 shows segment- and clip-wise predictions for
these six solo excerpts using solo/accompaniment sepa-
ration. The figure shows the results for the best transfer
learning system and the model trained on the JAZZ data
set from scratch [12]. A total of 20 predictions were gener-
ated per excerpt on 1 s long windows using a 50 % overlap.
These results suggest that transfer learning can improve
generalization of unseen data, but needs further systematic
investigations on a larger testing data set.

1 Ornette Coleman - Ramblin (as), Buddy DeFranco - Autumn Leaves
(cl), John Coltrane - My Favorite Things (ss), Frank Rossolino - Moon-
light in Vermont (tb), Lee Morgan - The Sidewinder (tp), Michael Brecker
- African Skies (ts)
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Figure 4. Mel-spectrogram of 10 second excerpts from
six jazz solos covering all solo instruments (top), segment-
wise and aggregated clip-wise predictions (using strategy
S1) are shown below for a model trained via transfer learn-
ing (two-pass) and a model trained from scratch. Clip-wise
ground truth is plotted in white rectangles [12].

6. CONCLUSION

In this paper, we investigated two methods to improve upon
a system for AIR on multitimbral ensemble recordings. We
first evaluated two state-of-the-art source separation meth-
ods and showed that on multitimbral audio data, analyzing
the harmonic and solo streams can be beneficial compared
to the mixed audio data.

For the specific use-case of jazz solo instrument classi-
fication, which involves classifying six instruments with
high timbral similarity, combining solo/accompaniment
source separation and transfer learning methods seems to
lead to AIR models with better generalization to unseen
data. This must be further investigated by increasing the
size of the JAZZ data set. While source separation al-
lows to narrow the focus on the predominant instrument,
transfer learning allows to exploit useful feature represen-
tations learned from related instruments. In the future,
a deep learning model capable of discriminating highly
similar instruments could potentially be applied in other
timbre-related recognition tasks such as performer identi-
fication [25].
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