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ABSTRACT

Audio-to-score alignment is an important pre-processing
step for in-depth analysis of classical music. In this pa-
per, we apply novel transposition-invariant audio features
to this task. These low-dimensional features represent lo-
cal pitch intervals and are learned in an unsupervised fash-
ion by a gated autoencoder. Our results show that the
proposed features are indeed fully transposition-invariant
and enable accurate alignments between transposed scores
and performances. Furthermore, they can even outperform
widely used features for audio-to-score alignment on ‘un-
transposed data’, and thus are a viable and more flexible al-
ternative to well-established features for music alignment
and matching.

1. INTRODUCTION

The task of synchronising an audio recording of a music
performance and its score has already been studied exten-
sively in the area of intelligent music processing. It forms
the basis for multi-modal inter- and intra-document nav-
igation applications [6, 10, 35] as well as for the analysis
of music performances, where e.g. aligned pairs of scores
and performances are used to extract tempo curves or learn
predictive performance models [12, 39].

Typically, this synchronisation task, known as audio-to-
score alignment, is based on a symbolic score representa-
tion, e.g. in the form of MIDI or MusicXML. In this paper,
we follow the common approach of converting this score
representation into a sound file using a software synthe-
sizer. The result is a low-quality rendition of the piece, in
which the time of every event is known. Then, for both
sequences the same kinds of features are computed, and a
sequence alignment algorithm is used to align the audio of
the performance to the audio representation of the score,
i.e. the problem of audio-to-score alignment is treated as
an audio-to-audio alignment task. The output is a map-
ping, relating all events in the score to time points in the
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performance audio. Common features for this task include
a variety of chroma-based features [8, 14, 15, 25], features
based on the semitone scale [4,6], and mel-frequency cep-
stral coefficients (MFCCs) [13].

In this paper, we apply novel low-dimensional features
to the task of music alignment. The features represent local
pitch intervals and are learned in an unsupervised fashion
by a gated autoencoder [23]. We will demonstrate how
these features can be used to synchronise a recording of a
performance to a transposed version of its score. Further-
more, as they are only based on a local context, the features
can even cope with multiple transpositions within a piece
with only minimal additional alignment error, which is not
possible at all with common pitch-based feature represen-
tations.

The main contributions of this paper are (1) the intro-
duction of novel transposition-invariant features to the task
of music synchronisation, (2) an in-depth analysis of their
properties in the context of this task, and (3) a direct com-
parison to chroma features, which are the quasi-standard
for this task. A cleaned-up implementation of the code
for the gated autoencoder used in this paper is publicly
available 1 . The paper is structured as follows. In Sec-
tion 2, the features are introduced. Section 3 briefly de-
scribes the alignment algorithm we are using throughout
the paper. Then, in Section 4 we present detailed experi-
ments on piano music, including a comparison of different
feature configurations, results on transposed scores, and a
comparison with chroma features. In Section 5 we discuss
the application of the features in the domain of complex
orchestral music. Finally, Section 6 gives an outlook on
future research directions.

2. TRANSPOSITION-INVARIANT FEATURES
FOR MUSIC SYNCHRONISATION

Transposition-invariant methods have been studied exten-
sively in music information retrieval (MIR), for example
in the context of music identification [2], structure analysis
[26], and content-based music retrieval [19, 21, 36]. How-
ever, so far there has been limited success in transposition-
invariant audio-to-score alignment. Currently, a typical ap-
proach is to first try to identify the transposition, transform
the inputs accordingly, and then apply common alignment

1 see https://github.com/SonyCSLParis/cgae-invar

592



techniques (see e.g. [33]). Another option is to perform
the alignment multiple times, with different transpositions
(e.g. the twelve possible transposition options when us-
ing chroma-based features) and then select the alignment
which produced the least alignment costs (see e.g. [34]).

These are cumbersome and error-prone methods. In this
paper, we demonstrate how to employ novel transposition-
invariant features for the task of score-to-audio alignment,
i.e. the features themselves are transposition-invariant.
These features have been proposed recently in [17] and
their usefulness has been demonstrated for tasks like the
detection of repeated (but possibly transposed) motifs,
themes and sections in classical music.

The features are learned automatically from audio data
in an unsupervised way by a gated autoencoder. The main
idea is to try to learn a relative representation of the current
audio frame, based on a small local context (i.e., n-gram,
the previous n frames). During the training process, the
gated autoencoder is forced to represent this target frame
via its preceding frames in a relative way (i.e. via interval
differences between the local context and the target frame).

In the following, we give a more detailed description of
how these features are learned. Specifics about the train-
ing data we are using in this paper can be found in the re-
spective sections on applying this approach to piano music
(Section 4) and orchestral music (Section 5).

2.1 Model

Let xt ∈ RM be a vector representing the energy dis-
tributed over M frequency bands at time t. Given a tem-
poral context xtt−n = xt−n . . .xt (i.e. the input) and the
next time slice xt+1 (i.e. the target), the goal is to learn a
mapping mt (i.e. the transposition-invariant feature vector
at time t) which does not change when shifting xt+1

t−n up-
or downwards in the pitch dimension.

Gated autoencoders (GAEs, see Figure 1) are funda-
mentally different to standard sparse coding models, like
denoising autoencoders. GAEs are explicitly designed to
learn relations (i.e., covariances) between data pairs by em-
ploying an element-wise product in the first layer of the
architecture. In musical sequences, using a GAE for learn-
ing relations between pitches in the input and pitches in the
target naturally results in representations of musical inter-
vals. The intervals are encoded in the latent variables of
the GAE as mapping codes mt (refer to [17] for more de-
tails on interval representations in a GAE). The goal of the
training is to find a mapping for any input/target pair which
transforms the input into the given target by applying the
represented intervals. The mapping at time t is calculated
as

mt = σh(W1σh(W0(Uxtt−n ·Vxt+1))), (1)

where U,V and Wk are weight matrices, and σh is the hy-
perbolic tangent non-linearity. The operator · (depicted as
a triangle in Figure 1) denotes the Hadamard (or element-
wise) product of the filter responses Uxtt−n and Vxt+1,

Figure 1. Schematic illustration of the gated autoencoder
architecture used for feature learning. Double arrows de-
note weights used for both, inference of the mapping mt

and the reconstruction of xt+1.

denoted as factors. The target of the GAE can be recon-
structed as a function of the input xtt−n and a mapping
mt:

x̃t+1 = V>(W>
0 W

>
1 mt ·Uxtt−n). (2)

As cost function we use the mean-squared error be-
tween the target xt+1 and the target’s reconstruction x̃t+1

as

MSE =
1

M
‖xt+1 − x̃t+1‖2 . (3)

2.2 Training Data Preprocessing

Models are learned directly from audio data, without the
need for any annotations. The empirically found prepro-
cessing parameters are as follows. The audio files are re-
sampled to 22.05 kHz. We choose a constant-Q trans-
formed spectrogram using a hop size of 448 (∼ 20ms),
and Hann windows with different sizes depending on the
frequency bin. The range comprises 120 frequency bins
(24 per octave), starting from a minimal frequency of 65.4
Hz. Each time slice is contrast-normalized to zero mean
and unit variance.

2.3 Training

The model is trained with stochastic gradient descent in
order to minimize the cost function (cf. Equation 3) using
the training data as described in Section 2.2. In an altered
training procedure introduced below, we randomly trans-
pose the data during training and explicitly aim at transpo-
sition invariance of the mapping codes.

2.3.1 Enforcing Transposition-Invariance

As described in Section 2.1 the classical GAE training pro-
cedure derives a mapping code from an input/target pair,
and subsequently penalizes the reconstruction error of the
target given the input and the derived mapping code. Al-
though this procedure naturally tends to lead to similar

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 593



mapping codes for input target pairs that have the same in-
terval relationships, the training does not explicitly enforce
such similarities and consequently the mappings may not
be maximally transposition invariant.

Under ideal transposition invariance, by definition the
mappings would be identical across different pitch trans-
positions of an input/target pair. Suppose that a pair
(xtt−n,xt+1) leads to a mapping m (by Equation (1)).
Transposition invariance implies that reconstructing a tar-
get x′t+1 from the pair (x′tt−n,m) should be as success-
ful as reconstructing xt+1 from the pair (xtt−n,m) when
(x′

t
t−n,x

′
t+1) can be obtained from (xtt−n,xt+1) by a sin-

gle pitch transposition.
Our altered training procedure explicitly aims to

achieve this characteristic of the mapping codes by pe-
nalizing the reconstruction error using mappings obtained
from transposed input/target pairs. More formally, we de-
fine a transposition function shift(x, δ), shifting the values
(CQT frequency bins) of a vector x of lengthM by δ steps:

shift(x, δ) = (x(0+δ) mod M , . . . , x(M−1+δ) mod M )>,
(4)

and shift(xtt−n, δ) denotes the transposition of each single
time step vector before concatenation and linearization.

The training procedure is then as follows: First, the
mapping code mt+1 of an input/target pair is inferred as
shown in Equation 1. Then, mt+1 is used to reconstruct
a transposed version of the target, from an equally trans-
posed input (modifying Equation 2) as

x̃′t+1 = σg(V
>(W>

0 W
>
1 mt ·Ushift(xtt−n, δ))), (5)

with δ ∈ [−60, 60] randomly chosen for each training
batch. Finally, we penalize the error between the recon-
struction of the transposed target and the actual transposed
target (i.e., employing Equation 3) as

MSE =
1

M

∥∥shift(xt+1, δ)− x̃′t+1

∥∥2 . (6)

This method amounts to both, a form of guided training
and data augmentation.

2.3.2 Training Details

The architecture and training details of the GAE are as fol-
lows. In this paper, we use two models with differing n-
gram lengths. The factor layer has 512 units for n-gram
length n = 16, and 256 units for n = 8. Furthermore, for
all models, there are 128 neurons in the first mapping layer
and 64 neurons in the second mapping layer, i.e. the fea-
tures we will be using throughout this paper for the align-
ment task are 64-dimensional.

L2 weight regularization for weights U and V is ap-
plied, as well as sparsity regularization [18] on the top-
most mapping layer. The deviation of the norms of the
columns of both weight matrices U and V from their av-
erage norm is penalized. Furthermore, we restrict these
norms to a maximum value. We apply 50% dropout on
the input and no dropout on the target, as proposed in [23].
The learning rate (1e-3) is gradually decremented to zero
over 300 epochs of training.

3. ALIGNMENT ALGORITHM

The goal of this paper is to give the reader a good intuition
about the novel transposition-invariant features for audio
alignment and focus on their properties, without being dis-
tracted by a complicated alignment algorithm. Thus, we
use a simple multi-scale variant of the dynamic time warp-
ing (DTW) algorithm (see [25] for a detailed description of
DTW) for the experiments throughout the paper, namely
FastDTW [32] with the radius parameter set to 50. We
performed all experiments presented in this paper using
the cityblock, Euclidean and cosine distance measures to
compute distances between feature vectors. Because the
choice of distance measure did not have a sizeable impact,
we only report the results using the Euclidean distance. As
FastDTW is a well-known and widely used algorithm, we
refrain from describing the algorithm here in detail and re-
fer the reader to the referenced works.

Obviously, a large number of more sophisticated alter-
natives to FastDTW exists. This includes methods based
on hidden Markov and semi-Markov models [27–29],
conditional random fields [16], general graphical models
[5, 20, 30, 31], Monte Carlo sampling [7, 24], and exten-
sions to DTW, e.g. multiple sequence alignment [37] and
integrated tempo models [3]. We are confident that the
presented features can also be employed successfully with
these more sophisticated alignment schemes.

4. EXPERIMENTS ON PIANO MUSIC

In this section we present a number of experiments, show-
casing the strengths of the proposed features as well as
their weaknesses. We will do this on piano music first, be-
fore moving on to more complex orchestral music in Sec-
tion 5. For learning the features, a dataset consisting of
100 random piano pieces of the MAPS dataset [9] (subset
MUS) was used. As discussed in Section 2, no annota-
tions are needed, thus actually any available audio record-
ing of piano music could be used. For the experiments, we
trained two models, differing in the size of their local con-
text: an 8-gram model and a 16-gram model (referred to as
8G Piano and 16G Piano in the remainder of the paper).

For the evaluation of audio-to-score alignment, a col-
lection of annotated test data (pairs of scores and exactly
aligned performances) is needed. We performed experi-
ments on four datasets (see Table 1). CB and CE consist of
22 recordings of the Ballade Op. 38 No. 1 and the Etude
Op. 10 No. 3 by Chopin [11], MS contains performances
of the first movements of the piano sonatas KV279-284,
KV330-333, KV457, KV475 and KV533 by Mozart [38],
and RP consists of three performances of the Prelude Op.
23 No. 5 by Rachmaninoff [1]. The scores are provided in
the MIDI format. Their global tempo is set such that the
score audio roughly matches the mean length of the given
performances. The scores are then synthesised with the
help of timidity 2 and a publicly available sound font. The
resulting audio files are used as score representations for
the alignment experiments.

2 https://sourceforge.net/projects/timidity/
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ID Dataset Files Duration

CE Chopin Etude 22 ∼ 30 min.
CB Chopin Ballade 22 ∼ 48 min.
MS Mozart Sonatas 13 ∼ 85 min.
RP Rachmaninoff Prelude 3 ∼ 12 min.

Table 1. The evaluation data set for the experiments on
piano music (see text).

In the experiments, we use two types of evaluation mea-
sures. For each experiment, the 1st quartile, the median,
and the 3rd quartile of the absolute errors at aligned refer-
ence points is given. We also report the percentage of refer-
ence points which have been aligned with errors smaller or
equal 50 ms, and smaller or equal 250 ms (similar to [6]).

4.1 Experiment 1: Feature Configurations

The first experiment compares the performance of the two
feature configurations 8G Piano and 16G Piano on the pi-
ano evaluation set (see Table 2). The differences between
the two configurations are relatively small, although the
8-gram feature consistently works slightly better than the
16-gram features. The danger of using a larger local con-
text is that different tempi can lead to very different con-
texts (e.g. faster tempi result in more notes contained in
the local context), which in turn leads to different features,
which is a problem for the matching process. We will re-
turn to this problem in a later experiment (see Section 4.4).
Because of space constraints, in the upcoming sections, we
will only report the results for 8G Piano.

4.2 Experiment 2: Transposition-invariance

Next, we demonstrate that the learned features are actu-
ally invariant to transpositions. To do so, we transposed
the score representations by -3, -2, -1, 0, +1, +2 and +3
semitones and tried to align the untransposed performances
to these scores. The results for the 8G Piano features are
shown in Table 3. The results for all transpositions, includ-
ing the untransposed scores, are very similar. Only minor
fluctuations occur randomly.

In addition, we prepared a second, more challenging
experiment. We manipulated the scores such that af-
ter every 30 seconds another transposition from the set
{−3,−2,−1,+1,+2,+3} is randomly applied. From
each score, we created five such randomly changing score
representations and tried to align the performances to these
scores. The results are shown in the rightmost column
of Table 3. Again, there is no difference to the other re-
sults. Basically, the transpositions only lead to at most
eight noisy feature vectors every time a new transposition
is applied, which is not a problem for the alignment algo-
rithm. We would also like to note that very few algorithms
or features would be capable of solving this task (see [26]
for another option). Other methods that first try to globally
identify the transposition and then use traditional methods
for the alignment are clearly not applicable here.

Dataset Measure 8G Piano 16G Piano

CB

1st Quartile 10 ms 11 ms
Median 22 ms 24 ms
3rd Quartile 39 ms 45 ms
Error ≤ 50 ms 83% 79%
Error ≤ 250 ms 94% 95%

CE

1st Quartile 10 ms 12 ms
Median 21 ms 25 ms
3rd Quartile 36 ms 45 ms
Error ≤ 50 ms 87% 79%
Error ≤ 250 ms 96% 95%

MS

1st Quartile 6 ms 6 ms
Median 13 ms 14 ms
3rd Quartile 25 ms 26 ms
Error ≤ 50 ms 90% 91%
Error ≤ 250 ms 100% 100%

RP

1st Quartile 14 ms 16 ms
Median 34 ms 40 ms
3rd Quartile 90 ms 92 ms
Error ≤ 50 ms 63% 57%
Error ≤ 250 ms 90% 93%

Table 2. Comparison of the 8-gram and the 16-gram fea-
ture models.

4.3 Experiment 3: Comparison to Chroma Features

It is now time to compare the 8G Piano features to well-
established features for the task of music alignment in
the normal, un-transposed alignment setting. To this end,
we computed the chroma cqt features 3 (henceforth re-
ferred to as Chroma) as provided by librosa 4 [22] (with
standard parameters except for the normalisation param-
eter, which we set to 1; the hop size is roughly 20 ms),
and aligned the performances to the scores. The results
are shown in Table 4. On this dataset, the proposed
transposition-invariant features consistently outperform
the well-established Chroma features, which are based
on absolute pitches. To summarise, so far the proposed
features show state-of-the-art performance on the stan-
dard alignment task, while additionally being able to align
transposed sequences to each other with no additional er-
ror.

4.4 Experiment 4: Robustness to Tempo Variations

Next, we have a closer look at the influence of different
tempi on our features. As they are based on a fixed lo-
cal context (a fixed number of frames), the tempo plays an
important role in their computation. For example, if the
tempo doubles, this means that musically speaking the lo-
cal context is twice as large as at the normal tempo and
additional notes might be included in this context, which
would not be part of the local context in the case of the

3 We also tried the CENS features, which are a variation of chroma fea-
tures, but as they consistently performed worse than the Chroma features,
we are not reporting the results here.

4 Version 0.6, DOI:10.5281/zenodo.1174893
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Transposition in Semitones

Dataset Measure -3 -2 -1 0 1 2 3 Rand. Transp.

CB

1st Quartile 10 ms 10 ms 11 ms 10 ms 10 ms 11 ms 10 ms 10 ms
Median 22 ms 22 ms 23 ms 22 ms 22 ms 23 ms 22 ms 22 ms
3rd Quartile 39 ms 39 ms 41 ms 39 ms 40 ms 40 ms 38 ms 39 ms
Error ≤ 50 ms 84% 83% 81% 83% 82% 83% 84% 83%
Error ≤ 250 ms 95% 94% 94% 94% 93% 95% 95% 95%

CE

1st Quartile 10 ms 10 ms 8 ms 10 ms 9 ms 9 ms 10 ms 9 ms
Median 21 ms 20 ms 18 ms 21 ms 19 ms 18 ms 20 ms 19 ms
3rd Quartile 37 ms 32 ms 30 ms 36 ms 33 ms 32 ms 33 ms 32 ms
Error ≤ 50 ms 83% 90% 91% 87% 89% 88% 90% 90%
Error ≤ 250 ms 93% 97% 98% 96% 97% 98% 97% 97%

MS

1st Quartile 6 ms 6 ms 6 ms 6 ms 6 ms 6 ms 6 ms 6 ms
Median 13 ms 13 ms 13 ms 13 ms 13 ms 14 ms 13 ms 13 ms
3rd Quartile 24 ms 24 ms 24 ms 25 ms 25 ms 26 ms 25 ms 25 ms
Error ≤ 50 ms 91% 91% 92% 90% 91% 90% 90% 91%
Error ≤ 250 ms 100% 100% 100% 100% 100% 100% 100% 100%

RP

1st Quartile 17 ms 16 ms 15 ms 14 ms 13 ms 12 ms 15 ms 14 ms
Median 45 ms 44 ms 36 ms 34 ms 35 ms 31 ms 34 ms 37 ms
3rd Quartile 136 ms 151 ms 106 ms 90 ms 130 ms 90 ms 103 ms 122 ms
Error ≤ 50 ms 53% 53% 60% 63% 59% 64% 60% 58%
Error ≤ 250 ms 84% 83% 88% 90% 85% 90% 89% 86%

Table 3. Results for 8-gram piano features on transposed versions of the scores (from -3 to +3 semitones). The rightmost
column gives the results on scores with randomly changing transpositions after every 30 seconds (see Section 4.2).

DS Measure Chroma 8G Piano

CB

1st Quartile 15 ms 10 ms
Median 34 ms 22 ms
3rd Quartile 80 ms 39 ms
Error ≤ 50 ms 64% 83%
Error ≤ 250 ms 85% 94%

CE

1st Quartile 13 ms 10 ms
Median 29 ms 21 ms
3rd Quartile 56 ms 36 ms
Error ≤ 50 ms 71% 87%
Error ≤ 250 ms 94% 96%

MS

1st Quartile 7 ms 6 ms
Median 16 ms 13 ms
3rd Quartile 31 ms 25 ms
Error ≤ 50 ms 85% 90%
Error ≤ 250 ms 98% 100%

RP

1st Quartile 17 ms 14 ms
Median 43 ms 34 ms
3rd Quartile 113 ms 90 ms
Error ≤ 50 ms 55% 63%
Error ≤ 250 ms 91% 90%

Table 4. Comparison of the transposition-invariant 8G
Piano features to the Chroma features on untransposed
scores.

normal tempo. To test the influence of tempo differences,
we created score representations using different tempi and
aligned the unchanged performances to them. Table 5 sum-
marises the results for the Chroma and the 8G Piano fea-
tures on scores synthesised with the base tempo, as well as
with 2

3 -times and 4
3 -times the base tempo. Unsurprisingly,

tempo in general influences the alignment results. How-
ever, while the Chroma features are much more robust to
differences in tempo between the sequences to be aligned,
the 8G Piano features struggle in this experiment. We re-
peated the experiment with more extreme tempo changes,
which confirmed this trend. While with the Chroma fea-
tures it is possible to more or less align sequences with
tempo differences of a factor of three, the transposition-
invariant features fail in these cases.

5. FIRST EXPERIMENTS ON ORCHESTRAL
MUSIC

In addition to the promising results on piano music, we
also present first experiments on orchestral music. To this
end, we trained an additional model on recordings of sym-
phonic music (seven full commercial recordings of sym-
phonies by Beethoven, Brahms, Bruckner, Berlioz and
Strauss), which will be referred to in the following as 8G
Orch. For comparison, we also evaluated the model from
the previous section (8G Piano) and the Chroma features
on the evaluation data. The evaluation data consists of two
recordings of classical symphonies: the 3rd symphony by
Beethoven (B3) and the 4th symphony by Mahler (M4).
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Chroma 8G Piano

DS Measure 2
3 Tempo Base Tempo 4

3 Tempo 2
3 Tempo Base Tempo 4

3 Tempo

CB

1st Quartile 19 ms 15 ms 13 ms 24 ms 10 ms 32 ms
Median 43 ms 34 ms 29 ms 63 ms 22 ms 120 ms
3rd Quartile 137 ms 80 ms 66 ms 116 ms 39 ms 205 ms
Error ≤ 50 ms 54% 64% 67% 47% 83% 33%
Error ≤ 250 ms 82% 85% 85% 87% 94% 84%

CE

1st Quartile 14 ms 13 ms 12 ms 27 ms 10 ms 26 ms
Median 30 ms 29 ms 25 ms 70 ms 21 ms 83 ms
3rd Quartile 65 ms 56 ms 53 ms 116 ms 36 ms 176 ms
Error ≤ 50 ms 69% 71% 73% 40% 87% 38%
Error ≤ 250 ms 90% 94% 94% 93% 96% 80%

MS

1st Quartile 8 ms 7 ms 9 ms 7 ms 6 ms 9 ms
Median 18 ms 16 ms 20 ms 16 ms 13 ms 21 ms
3rd Quartile 42 ms 31 ms 49 ms 33 ms 25 ms 52 ms
Error ≤ 50 ms 79% 85% 75% 84% 90% 74%
Error ≤ 250 ms 98% 98% 97% 99% 100% 98%

RP

1st Quartile 18 ms 17 ms 20 ms 22 ms 14 ms 30 ms
Median 44 ms 43 ms 58 ms 69 ms 34 ms 86 ms
3rd Quartile 116 ms 113 ms 141 ms 184 ms 90 ms 202 ms
Error ≤ 50 ms 53% 55% 56% 43% 63% 37%
Error ≤ 250 ms 92% 91% 87% 82% 90% 85%

Table 5. Comparison of Chroma and 8G Piano features for alignments to scores in different tempi (see Section 4.4).

DS Measure Chroma 8G Piano 8G Orch

B3

1st Quartile 20 ms 25 ms 22 ms
Median 48 ms 54 ms 49 ms
3rd Quartile 108 ms 104 ms 111 ms
Err. ≤ 50 ms 52% 47% 51%
Err. ≤ 250 ms 88% 90% 89%

M4

1st Quartile 46 ms 50 ms 57 ms
Median 110 ms 129 ms 142 ms
3rd Quartile 278 ms 477 ms 535 ms
Err. ≤ 50 ms 27% 25% 23%
Err. ≤ 250 ms 73% 66% 62%

Table 6. Comparison of the transposition-invariant and
chroma features on orchestral music (see Section 5).

Both have been manually annotated at the downbeat level.
In this alignment experiment, the Chroma features out-

perform both the 8G Piano and the 8G Orch features, es-
pecially on the symphony by Mahler (see Table 6). We
mainly contribute this to the fact that these rather long
recordings contain a number of sections with different
tempi, which is not reflected in the score representations.
As has been established in Section 4.4, the transposition-
invariant features struggle in these cases. Still, we will
have to further investigate the use of these features for or-
chestral music.

It is interesting to note that 8G Piano gives slightly bet-
ter results than 8G Orch, even though this dataset solely
consists of orchestral music. It turns out that the learned

features are very general and can be readily applied to dif-
ferent instruments. We also tried to overfit on the test data,
i.e., we trained a feature model using the audio files we
would later use for the alignment experiments. Even this
approach only led to fractionally better results.

6. CONCLUSIONS

In this paper, we reported on audio-to-score alignment ex-
periments with novel transposition-invariant features. We
have shown that the features are indeed fully invariant to
transpositions and in many settings can outperform the
quasi-standard features for this task, namely chroma-based
features. On the other hand, we also demonstrated the
weaknesses of the transposition-invariant features, espe-
cially their fragility regarding different tempi, which is a
serious limitation in the context of alignment tasks.

In the future, we will study this weakness in depth and
will try to alleviate this problem. Ideas include further ex-
periments with different n-gram lengths, the adoption of
alignment schemes including tempo models which itera-
tively adapt the local tempi of the representations, and to
try to include tempo-invariance as an additional goal in the
learning process of the features.
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