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ABSTRACT

Many music theoretical constructs (such as scale types,
modes, cadences, and chord types) are defined in terms of
pitch intervals—relative distances between pitches. There-
fore, when computer models are employed in music tasks,
it can be useful to operate on interval representations rather
than on the raw musical surface. Moreover, interval rep-
resentations are transposition-invariant, valuable for tasks
like audio alignment, cover song detection and music struc-
ture analysis. We employ a gated autoencoder to learn
fixed-length, invertible and transposition-invariant interval
representations from polyphonic music in the symbolic do-
main and in audio. An unsupervised training method is
proposed yielding an organization of intervals in the repre-
sentation space which is musically plausible. Based on the
representations, a transposition-invariant self-similarity ma-
trix is constructed and used to determine repeated sections
in symbolic music and in audio, yielding competitive re-
sults in the MIREX task ”Discovery of Repeated Themes
and Sections”.

1. INTRODUCTION

The notion of relative pitch is important in music under-
standing. Many music theoretical concepts, such as scale
types, modes, chord types and cadences, are defined in
terms of relations between pitches or pitch classes. But
relative pitch is not only a music theoretical construct. It
is common for people to perceive and memorize melodies
in terms of pitch intervals (or in terms of contours, the
upward or downward direction of pitch intervals) rather
than sequences of absolute pitches. This characteristic of
music perception also has ramifications for the perception
of form in musical works, since it implies that transposi-
tion of some musical fragment along the pitch dimension
(such that the relative distances between pitches remain the
same) does not alter the perceived identity of the musical
material, or at least establishes a sense of similarity be-
tween the original and the transposed material. As such,
adequate detection of musical form in terms of (approxi-
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mately) repeated structures presupposes the ability to ac-
count for pitch transposition—one of the most common
types of transformations found in music.

Relative pitch perception in humans is currently not well-
understood [13]. For example there are no established the-
ories on how the human brain derives a relative representa-
tion of pitch from the tonotopic representations formed in
the cochlea, neither is it clear whether there is a connection
between the perception of pitch relations in simultaneous
versus consecutive pitches.

Computational approaches to address tasks of music un-
derstanding (such as detecting patterns and form in music)
often circumvent this issue by representing musical stim-
uli as sequences of monophonic pitches, after which sim-
ply differencing consecutive pitches yields a relative pitch
representation. This approach also works for polyphonic
music, to the extent that the music can be meaningfully
segregated into monophonic pitch streams. A drawback
of this approach is that it presupposes the ability to segre-
gate musical streams, which is often far from trivial due to
the ambiguity of musical contexts. To take an analogous
approach on acoustical representations of musical stimuli
is even more challenging, since it further depends on the
ability to detect pitches and onsets in sound.

In this paper we take a different approach altogether.
We train a neural network model to learn representations
that represent the relation between the music at some time
point t and the preceding musical context. During train-
ing, these representations are adapted to minimize the re-
construction error of the music at t given the preceding
context and the representation itself.

A crucial aspect of the model is its bilinear architec-
ture (more specifically, a gated autoencoder, or GAE ar-
chitecture) involving multiplicative connections, which fa-
cilitates the formation of relative pitch representations. We
stimulate such representations more explicitly using an al-
tered training procedure in which we transpose the training
data using arbitrary transpositions.

The result are two models (for symbolic music and au-
dio) that can map both monophonic and polyphonic music
to a sequence of points in a vector space—the mapping
space—in a way that is invariant to pitch transpositions.
This means that a musical fragment will be projected to
the same mapping space trajectory independently of how
it is transposed.

We validate our approach experimentally in several ways.
First we show that musical fragments that are nearest neigh-
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bors in the mapping space have many pitch intervals in
common (as opposed to nearest neighbors in the input space).
Then we show that the topology of the learned mapping
space reflects musically meaningful relations between in-
tervals (such as the tritone being dissimilar to other in-
tervals). Lastly we use mapping space representations to
detect musical form both for symbolic and audio repre-
sentations of music, showing that it yields competitive re-
sults, and in the case of audio even improves the state of
the art. A re-implementation of the transposition-invariant
GAE for audio is publicly available 1 .

The paper is structured as follows. Section 2 provides
an overview of relation learning using GAEs, and reviews
work on creating interval representations from music. In
Section 3, the used architecture is described and in Sec-
tion 4, data is introduced on which the GAE is trained.
The training procedure, including the novel method to sup-
port the emergence of transposition-invariance, is proposed
in Section 5. The experiments conducted to examine the
properties of learned mappings are described in Section 6,
and results are presented and discussed in Section 7. Sec-
tion 8 wraps the paper up with conclusions and prospects
of future work.

2. RELATED WORK

GAEs utilize multiplicative interactions to learn correla-
tions between or within data instances. The method was
inspired by the correlation theory of the brain [32], where it
was pointed out that some cognitive phenomena cannot be
explained with the conventional brain theory and an exten-
sion was proposed which involves the correlation of neural
patterns.

In machine learning, this principle was deployed in bi-
linear models, for example to separate person and pose
in face images [30]. Bi-linear models, like the GAE, are
two-factor models whose outputs are linear in either fac-
tor when the other is held constant. [26] proposed another
variant of a bi-linear model in order to learn objects and
their optical flow. Due to its similar architecture, the gated
Boltzmann machine (GBM) [17,18] can be seen as a direct
predecessor of the GAE. The GAE was introduced by [14]
as a derivative of the GBM, as standard learning criteria
became applicable through the development of denoising
autoencoders [31].

GAEs have been further used to learn transformation-
invariant representations for classification tasks [15], for
parent-offspring resemblance [5], for learning to negate
adjectives in linguistics [27], for activity recognition with
the Kinekt sensor [22], in robotics to learn to write num-
bers [6], and for learning multi-modal mappings between
action, sound, and visual stimuli [7].

In music, bi-linear models have been applied to learn
co-variances within spectrogram data for music similarity
estimation [28], and for learning musical transformations
in the symbolic domain [9]. In sequence modeling, the
GAE has been utilized to learn co-variances between sub-

1 see https://github.com/SonyCSLParis/cgae-invar

sequent frames in movies of rotated 3D objects [16] and
to predict accelerated motion by stacking more layers in
order to learn higher-order derivatives [21], which uses a
method similar to the one proposed here.

Transposition-invariance in music is achieved in [20]
by transforming symbolic pitch–time representations into
point-sets, in which translatable patterns are identified. An-
other method in the symbolic domain is that in [2], where
a general interval representation for polyphonic music is
put forward, in [24], where specific pitch-class intervals in
polyphonic music are used for characterizing music styles
and in [23] where transposition-invariant self-similarity ma-
trices are computed. In [12], an approach to calculating
transposition-invariant mid-level representations from au-
dio is introduced, based on the 2-D power spectrum of
melodic fragments. Similarly, a method to calculate inter-
pretable interval representations from audio is proposed in
[33], where chromagrams that are close in time are cross-
correlated to obtain local pitch-invariance.

3. MODEL

Let xj be a vector representing pitches of currently sound-
ing notes (in the symbolic domain) or the energy distributed
over frequency bands (in the audio domain), in a fixed-
length time interval. Given a temporal context xtt−n =
xt−n . . .xt as the input and the next time step xt+1 as the
target, the goal is to learn a mapping mt which does not
change when shifting xt+1

t−n up- or downwards in the pitch
dimension. A gated autoencoder (GAE, depicted in Fig-
ure 1) is well-suited for this task, modeling the intervals
between reference pitches in the input and pitches in the
target, encoded in the latent variables of the GAE as map-
ping codes mj . Unlike in common prediction tasks, the
targets are known when training a GAE. The goal of the
training is to find a mapping mj for any input/target pair
which transforms the input into the given target. The map-
ping at time t is calculated as

mt = σh(W1σh(W0(Uxtt−n ·Vxt+1))), (1)

where U,V and Wk are weight matrices, σh is the hyper-
bolic tangent non-linearity, and we will refer to the learnt
mappings mj as the mapping space of the input/target pairs.
The operator · (depicted as a triangle in Figure 1) depicts
the Hadamard (or element-wise) product of the filter re-
sponses Uxtt−n and Vxt+1, denoted as factors. This op-
eration allows the model to relate its inputs, making it pos-
sible to learn interval representations.

The target of the GAE can be reconstructed as a func-
tion of the input xtt−n and a mapping mt:

x̃t+1 = σg(V
>(W>

0 W
>
1 mt ·Uxtt−n)), (2)

where σg is the sigmoid non-linearity for binary input and
the identity function for real-valued input.

The cost function is defined to penalize the error of re-
constructing the target xt+1 given the input xtt−n and the
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Figure 1: Schematic illustration of the gated autoencoder
architecture used in the experiments.

mapping mt as

Lc = c(xt+1, x̃t+1), (3)

where c(·) is the mean-square error for real-valued sequen-
ces and the cross-entropy loss for binary sequences.

4. DATA

We train the model both on symbolic music representations
and on audio spectrograms. For the symbolic data, the
Mozart/Batik data set [35] is used, consisting of 13 piano
sonatas containing more than 106,000 notes. The dataset is
encoded as successive 60 dimensional binary vectors (en-
coding MIDI note number 36 to 96), each representing a
single time step of 1/16th note duration. The pitch of an
active note is encoded as a corresponding on-bit, and as
multiple voices are encoded simultaneously, a vector may
have multiple active bits. The result is a pianoroll-like rep-
resentation.

The audio dataset consists of 100 random piano pieces
of the MAPS dataset [8] (subset MUS), at a sampling rate
of 22.05 kHz. We choose a constant-Q transformed spec-
trogram using a hop size of 1984, and Hann windows with
different sizes depending on the frequency bin. The range
comprises 120 frequency bins (24 per octave), starting from
a minimal frequency of 65.4 Hz. Each time step is contrast-
normalized to zero mean and unit variance.

5. TRAINING

The model is trained with stochastic gradient descent in
order to minimize the cost function (cf. Equation 3) us-
ing the data described in Section 4. However, rather than
using the data as is, we use data-augmentation in combina-
tion with an altered training procedure to explicitly aim at
transposition invariance of the mapping codes.

5.1 Enforcing Transposition-Invariance

As described in Section 3 the classical GAE training pro-
cedure derives a mapping code from an input/target pair,

and subsequently penalizes the reconstruction error of the
target given the input and the derived mapping code. Al-
though this procedure naturally tends to lead to similar
mapping codes for input target pairs that have the same in-
terval relationships, the training does not explicitly enforce
such similarities and consequently the mappings may not
be maximally transposition invariant.

Under ideal transposition invariance, by definition the
mappings would be identical across different pitch
transpositions of an input/target pair. Suppose that a pair
(xtt−n,xt+1) leads to a mapping m (by Equation 1). Trans-
position invariance implies that reconstructing a target x′t+1

from the pair (x′tt−n,m) should be as successful as recon-
structing xt+1 from the pair (xtt−n,m) when (x′

t
t−n,x

′
t+1)

can be obtained from (xtt−n,xt+1) by a single pitch trans-
position.

Our altered training procedure explicitly aims to achieve
this characteristic of the mapping codes by penalizing the
reconstruction error using mappings obtained from trans-
posed input/target pairs. More formally, we define a trans-
position function shift(x, δ), shifting the values of a vector
x of length M by δ steps (MIDI note numbers and CQT
frequency bins for symbolic and audio data, respectively):

shift(x, δ) = (x(0+δ) mod M , . . . , x(M−1+δ) mod M )>,
(4)

and shift(xtt−n, δ) denotes the transposition of each single
time step vector before concatenation and linearization.

The training procedure is then as follows. First, the
mapping code mt of an input/target pair is inferred as shown
in Equation 1. Then, mt is used to reconstruct a trans-
posed version of the target, from an equally transposed in-
put (modifying Equation 2) as

x̃′t+1 = σg(V
>(W>

0 W
>
1 mt ·Ushift(xtt−n, δ))), (5)

with δ ∈ [−30, 30] for the symbolic, and δ ∈ [−60, 60]
for the audio data. Finally, we penalize the error between
the reconstruction of the transposed target and the actual
transposed target (i.e., employing Equation 3) as

L(shift(xt+1, δ), x̃
′
t+1). (6)

The transposition distance δ is randomly chosen for each
training batch. This method amounts to both, a form of
guided training and data augmentation. Some weights (i.e.,
filters) in U and V resulting from that training are depicted
in Figure 2.

5.2 Architecture and Training Details

The architecture and training details of the GAE are as fol-
lows: A temporal context length of n = 8 is used (the
choice of n > 1 leads to higher robustness of the mapping
codes to diatonic transposition). The factor layer has 1024
units for the symbolic data, and 512 units for the spec-
trogram data. Furthermore, for all datasets, there are 128
neurons in the first mapping layer and 64 neurons in the
second mapping layer (resulting in mt ∈ R64).

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 663



Figure 2: Some filter pairs ∈ {U,V} of a GAE trained on
polyphonic Mozart piano pieces.

L2 weight regularization for weights U and V is ap-
plied, as well as sparsity regularization [11] on the top-
most mapping layer. The deviation of the norms of the
columns of both weight matrices U and V from their av-
erage norm is penalized. Furthermore, we restrict these
norms to a maximum value. We apply 50% dropout on
the input and no dropout on the target, as proposed in [14].
The learning rate (1e-3) is gradually decremented to zero
over the course of training.

6. EXPERIMENTS

In this Section we describe several experimental analyses
to validate the proposed approach. They are intended to
test the degree of transposition-invariance of the learned
mappings, as well as assess their musical relevance (Sec-
tions 6.1 and 6.3). Finally, we put the learned represen-
tations to practice in a repeated section discovery task for
symbolic music and audio (Section 6.2).

6.1 Classification and Cluster Analysis

Our hypothesis is that the model learns relative pitch rep-
resentations (i.e. intervals) from polyphonic absolute pitch
sequences. In order to test this hypothesis, we conduct two
experiments using the symbolic data.

In the first experiment a ten-fold k-nn classification of
intervals is performed (where k = 10), where the task is to
identify all pitch intervals between notes in the input and
the target of an input/target pair. If the learned mappings
actually represent intervals, the classifier will perform sub-
stantially better on the mappings than on the input space.
As intervals in music are transposition-invariant, the inter-
val labels do not change when performing transposition in
the input space. Thus, we perform the classification on
the mappings of the original data and of randomly trans-
posed data, to test if the mappings are indeed transposition-
invariant.

We label the symbolic train data input/target pairs ac-
cording to all intervals which occur between them, inde-
pendent of the temporal distance of the notes exhibiting
the intervals. Thus, each pair can have multiple labels. For
each pair in the test set the k-nn classifier predicts the set
of interval labels that are present in the k neighbors of that
pair. The classification is performed in the input space (us-
ing concatenated pairs) and in the mapping space. Using
these predictions we determine the precision, recall, and

Data Precision Recall F1

Original input
Mapping space 91.27 70.25 76.66
Input space 65.58 46.05 50.59

Transposed input
Mapping space 90.78 71.44 77.31
Input space 51.81 32.99 37.43

All 26.40 100.0 40.05
None 0.0 0.0 0.0

Table 1: Results of the k-nn classification in the map-
ping space and in the input space for the original symbolic
data and data randomly transposed by [−24, 24] semi-
tones. “All” is a lower bound (always predict all intervals),
“None” returns the empty set.

F-score over the test set (cf. Table 1). For example, when a
pair contains 6 intervals and the classifier estimate yield 4
true-positive and 4 false-positive interval occurrences, that
pair is assigned a precision of 0.5 and a recall of 0.67.

In the second part of the experiment, the cluster cen-
ters of all intervals in the mapping space are determined.
Again, each pair projected into the mapping space accounts
for all intervals it exhibits and can therefore participate in
more than one cluster. The mutual Euclidean distances be-
tween all cluster centers are displayed as a matrix (cf. Fig-
ure 3). An interpretation of the results follows in Section 7.

6.2 Discovery of Repeated Themes and Sections

The MIREX Task for Discovery of Repeated Themes and
Sections for Symbolic Music and Audio 2 tests algorithms
for their ability to identify repeated patterns in music. The
commonly used JKUPDD dataset [3] contains 26 motifs,
themes, and repeated sections annotated in 5 pieces by J.
S. Bach, L. v. Beethoven, F. Chopin, O. Gibbons and W.
A. Mozart. We use the MIDI and the audio versions of the
dataset and preprocess them as described in Section 4.

We calculate the reciprocal of the Euclidean distances
between all representations mt of a song, resulting in a
transposition-invariant similarity matrix X . Then, the val-
ues of the main diagonal are set to the minimal value of the
matrix. Subsequently, the matrix is normalized and con-
volved with an identity matrix of size 15 × 15 to empha-
size and smooth diagonals (Figure 4 shows a resulting ma-
trix). The method used to determine repeated parts based
on diagonals of high values in the self-similarity matrix is
adopted from [25], with a different method to identify di-
agonals, as described below.

The function

s(i, j,N) =
N∑

k=N−m

X(i+ k, j + k)wk
m

(7)

returns the score for a diagonal starting at X(i, j) with

2 http://www.music-ir.org/mirex/wiki/2017:
Discovery_of_Repeated_Themes_&_Sections
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Figure 3: Distance matrix of cluster centers of intervals
represented in mapping space. Darker cells indicate higher
distances between respective clusters, brighter cells indi-
cate closeness.

length N , and diagonals with high score are considered to
be repeated sections. For each i, j, we iteratively evaluate
the score with N increasing from 1 in integer steps, until
the score undercuts a threshold γ. Only the last m values,
m = min(10, N), of the diagonal are taken into account,
because those values indicate when to stop tracing. The
factor

wk =
1 + k +m−N

m
(8)

linearly weights the last m values of the diagonal so that
later values have more impact on the overall score.

Three empirically determined parameters influence the
functioning of the method: (1) from the diagonals found,
we only keep those spanning more than 2 whole notes,
(2) all sections whose common boundaries start and end
within the length of a half note are considered to be repe-
titions of each other, (3) the thresholds γ determining if a
diagonal should be considered a repetition in the symbolic
and the audio data are set to 0.9 and 0.81, respectively. The
results are shown in Table 2 and are discussed in Section 7.

6.3 Sensitivity Analysis

The sensitivity of the model to specific context informa-
tion provides important insights into the functioning of the
model. A common way of determining a networks sen-
sitivity is by calculating the absolute value of the gradi-
ents of the networks predictions with respect to the input,
holding the network parameters fixed [29]. Figure 5 shows
the sensitivity of the model with respect to the temporal
context. The model is particularly sensitive to note oc-
currences at t ∈ {0,−3,−7}. This shows that the most
informative notes for a prediction are direct predecessors
(t = 0), and notes which occur a quarter (t = −3) and a

Figure 4: Symbolic music and corresponding self-
similarity matrix calculated from transposition-invariant
mapping codes. Warmer colors indicate similarity, colder
colors indicate dissimilarity.

half note (t = −7, i.e., eight sixteenth notes) before the
prediction.

7. RESULTS AND DISCUSSION

The results of the k-nn classification on the raw data and on
representations learnt by the model are shown in Table 1.
Classification in the mapping space appreciably outper-
forms classification in the input space, and obtains similar
values for mappings of the original data and the randomly
transposed data. In contrast, when performing classifica-
tion in the input space the results deteriorate for the ran-
domly transposed input and do not exceed the theoretical
lower bound (i.e, always predict all intervals). As the reg-
ister and keys of the original data are limited, correlations
between absolute and relative pitch exist. When transpos-
ing the input, the classifier cannot make use of these abso-
lute cues for relative pitch any more and performs weakly
in the input space.

Figure 3 indicates which intervals are close to each other
in the mapping space. An obvious regularity are the slightly
brighter k-diagonals (i.e. parallels to the main diagonal)
with k ∈ {−24,−12, 12, 24}, showing that two pitch in-
tervals lead to similar mapping codes when they result in
the same pitch class, such as the intervals +8 and -4 semi-
tones, or -7 and -19 semitones. This is an indication that
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Algorithm Fest Pest Rest Fo(.5) Po(.5) Ro(.5) Fo(.75) Po(.75) Ro(.75) F3 P3 R3 Time (s)

Symbolic
GAE intervals (ours) 59.07 77.60 58.30 68.92 80.24 67.46 77.51 91.38 73.29 50.44 60.36 53.23 127
VMO symbolic [34] 60.79 74.57 56.94 71.92 79.54 68.78 75.98 75.98 75.99 56.68 68.98 53.56 4333
SIARCT-CFP [4] 33.70 21.50 78.00 76.50 78.30 74.70 - - - - - - -
COSIATEC [19] 50.20 43.60 63.80 63.20 57.00 71.60 68.40 65.40 76.40 44.20 40.40 54.40 7297

Audio
GAE intervals (ours) 57.67 67.46 59.52 58.85 61.89 56.54 68.44 72.62 64.86 51.61 59.60 55.13 194
VMO deadpan [34] 56.15 66.80 57.83 67.78 72.93 64.30 70.58 72.81 68.66 50.60 61.36 52.25 96
SIARCT-CFP [4] 23.94 14.90 60.90 56.87 62.90 51.90 - - - - - - -
Nieto [25] 49.80 54.96 51.73 38.73 34.98 45.17 31.79 37.58 27.61 32.01 35.12 35.28 454

Table 2: Different precision, recall and f-scores (adopted from [34], details on the measures are given in [3]) of different
methods in the Discovery of Repeated Themes and Sections MIREX task, for symbolic music and audio. The F3 score
constitutes a summarization of all measures.

, sixteenth notes

Figure 5: Absolute sensitivity of the model when look-
ing backwards on the temporal context, averaged over the
whole dataset.

the model learns the phenomenon of octave equivalence,
even if the input to the model represents only absolute
pitch. Another distinct feature is the stripe which is orthog-
onal to the main diagonal (i.e. where y = −x). This indi-
cates that the model develops some notion of relative dis-
tances, by positioning intervals of the same distance (but
different signs) close to each other.

Note also that the mappings of certain intervals, notably
6 and −6, are distant to those of most other intervals (dark
horizontal and vertical lines). This likely reflects the fact
that tritone intervals are rare in diatonic music, and is fur-
ther evidence of the musical significance of the learned
mappings.

Table 2 shows results of the repeated themes and sec-
tion discovery task, where the F3 score is a good indi-
cator for the overall performance of the models (see [3]
for a thorough explanation on the respective measures).
For the audio data, the current state-of-the-art F3 score
was raised from 50.60 to 51.61 by our proposed method.
The method performs slightly worse on the symbolic data,
which is counterintuitive at first sight, given that results
of other models suggest that this task is easier. Our hy-
pothesis is that for discovery of repeated sections, approx-

imate matching leads to better results than exact compar-
ison, simply because musical variation goes beyond chro-
matic transposition (towards which our model is invariant).
For approximate matching, a spectrogram representation
is better suited than symbolic vectors, as notes are blurred
over more than one frequency bin, and harmonics may pro-
vide additional cues for a similarity estimation. The pro-
posed approach is computationally efficient, because the
diagonal detector (cf. Equations 7 and 8) is rather sim-
ple and the transposition-invariance of the representations
does not require explicit comparison of mutually trans-
posed musical textures.

8. CONCLUSION AND FUTURE WORK

In this paper we have presented a computational approach
to deriving (pitch) transposition-invariant vector space rep-
resentations of music both in the symbolic and the audio
domain. The representations encode pitch intervals that
occur in the music in a musically meaningful way, with tri-
tone intervals—a rare interval in diatonic music—leading
to more distinct representations, and octaves leading to
more similar representations. Furthermore, the temporal
sensitivity of the model reveals a beat pattern that shows in-
creased sensitivity to pitch intervals occurring at beat mul-
tiples of each other.

The transposition-invariance of the representations
makes it possible to detect transposed repetitions of mu-
sical sections in the symbolic and in the spectral domain of
audio. We have demonstrated that this is beneficial in tasks
such as the MIREX task Discovery of Repeated Themes
and Sections. A simple diagonal finding approach on a
transposition-invariant self-similarity matrix produced by
our model is sufficient to outperform the state of the art in
the audio version of the task.

We believe it is worthwhile to further explore the utility
of transposition-invariant music representations for other
applications, including speech recognition, music summa-
rization, music classification, transposition-invariant mu-
sic alignment (including a cappella voices with pitch drift),
query by humming, fast melody-based retrieval in large au-
dio collections, and music generation. First results show
that the proposed representations are useful for audio-to-
score alignment [1] and for music prediction tasks [10].
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