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ABSTRACT

Connectionist sequence models (e.g., RNNs) applied to
musical sequences suffer from two known problems: First,
they have strictly “absolute pitch perception”. Therefore,
they fail to generalize over musical concepts which are
commonly perceived in terms of relative distances between
pitches (e.g., melodies, scale types, modes, cadences, or
chord types). Second, they fall short of capturing the con-
cepts of repetition and musical form. In this paper we
introduce the recurrent gated autoencoder (RGAE), a re-
current neural network which learns and operates on in-
terval representations of musical sequences. The relative
pitch modeling increases generalization and reduces spar-
sity in the input data. Furthermore, it can learn sequences
of copy-and-shift operations (i.e. chromatically transposed
copies of musical fragments)—a promising capability for
learning musical repetition structure. We show that the
RGAE improves the state of the art for general connec-
tionist sequence models in learning to predict monophonic
melodies, and that ensembles of relative and absolute mu-
sic processing models improve the results appreciably. Fur-
thermore, we show that the relative pitch processing of the
RGAE naturally facilitates the learning and the generation
of sequences of copy-and-shift operations, wherefore the
RGAE greatly outperforms a common absolute pitch re-
current neural network on this task.

1. INTRODUCTION

The objective of sequence models for music prediction is
to predict (the probability of) musical events at the next
time step, given some prior musical context. In the (most
common) case of predicting note events, this task involves
finding relationships between past and future occurrences
of absolute pitches. However, many music theoretical con-
structs that might help to find such relationships are de-
fined in relative terms, such as diatonic scale steps, and
cadences. The discrepancy between the relative nature of
many regularities in music and the absolute pitch represen-
tation is problematic for modeling tasks, because it leads to
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high sparsity in the input data, increased model sizes, and
altogether reduced generalization in music modeling.

To remedy these problems, musical input sequences can
be transposed to a common key before training, augmented
by random transpositions during training, or, in case of
symbolic monophonic music, transformed into interval rep-
resentations before training. In this work, we propose a
sequence model which learns both interval representations
from absolute pitch sequences and temporal dependencies
between these intervals. By learning not only the inter-
vals between two successive notes, but all intervals within
a window of n pitches, the model is more robust to dia-
tonic transposition and can also learn repetition structure.
More precisely, a recurrent neural network (RNN) is em-
ployed on top of a gated autoencoder (GAE), which we re-
fer to as recurrent gated autoencoder (RGAE). The GAE
portion learns the intervals between its input and its target
pitches and represents them in its latent space. The RNN
portion operates on these interval representations, to learn
their temporal dependencies. The implicit transformation
to intervals allows this architecture to operate directly on
absolute musical textures, without the need for data pre-
processing. Besides, relative pitch modeling reduces the
sparsity in the data and the representations learned by the
GAE are transposition-invariant. Therefore, the RGAE
requires less temporal connections than a common RNN
while achieving higher prediction accuracy.

Also, operating on the intervals of input sequences brings
added value to sequence modeling. By allowing the model
to relate its prediction with events using specific time lags,
it can learn copy-and-shift operations. In the space of inter-
vals, such operations are performed by repeatedly applying
a constant interval to events occurring a constant time lag
in the past. Moreover, the RNN portion of the architec-
ture can learn sequences of such copy-and-shift operations
(i.e., “structure schemes”), which can then be realized as
musical notes by the GAE.

This ability is promising for music modeling, where
musical form defines the self-similarity within a piece, and
repeated sections often occur as a transposed (i.e., shifted
in the pitch dimension) version of the initial section. Mu-
sical form is challenging to learn with common sequence
models, like RNNs. They are specialized in learning the
statistics of musical textures and are “blind” towards simi-
larity and (transposed) repetition (i.e., there is no content-
independent “repetition neuron”). As a result, when sam-
pling music using such models, repeated fragments occur
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either due to chance or as a phenomenon of an entangle-
ment with a learned texture. In contrast, the ability of
RGAEs to learn copy-and-shift operations may allow to
represent musical form explicitly, and to realize learned
schemes as musical textures in music prediction and music
generation tasks.

We show that the RGAE is competitive with state-of-
the-art models in a music sequence learning task. Fur-
thermore, we demonstrate that the RGAE, due to its rel-
ative pitch processing, is complementary to absolute pitch
models, by combining their predictions to obtain improved
accuracy. Lastly, we show that the RGAE is particularly
suited for learning sequences of copy-and-shift operations.
It can learn to recognize and continue pre-defined “struc-
ture schemes”, abstracted from the actual texture, with
which the scheme is realized.

In Section 2, we provide an overview of related mod-
els and related publications. In Section 3, the GAE and
the proposed extensions to the RGAE are described, as
well as the baseline RNN used for comparison and com-
bined prediction. General training details concerning the
GAE are given in Section 4. The two experiments con-
ducted, including the data used, training details and dis-
cussion for each experiment separately, are presented in
Section 5. Section 6 concludes the paper and provides fur-
ther directions.

2. RELATED WORK

GAEs are bi-linear models utilizing multiplicative interac-
tions to learn correlations between or within data instances.
They were introduced by [15] as a derivative of the gated
Boltzmann machines (GBMs) [17, 18], as standard learn-
ing criteria became applicable through the development of
denoising autoencoders [28]. In music, bi-linear models
were applied to learn co-variances within spectrogram data
for music similarity estimation [25], and for learning mu-
sical transformations in the symbolic domain [11].

The GAE was utilized for learning the derivatives of se-
quences in [16] (between subsequent frames in movies of
rotated 3D objects), and to predict accelerated motion by
stacking two layers to learn second-order derivatives [19].
This method is very similar to the one proposed here, but
we use different dimensionalities between input and out-
put, and we do not assume constant transformations but
rather learn sequences of transformations using an RNN.

Probabilistic n-gram models, specialized on learning to
predict monophonic pitch sequences include IDyOM [23],
and [10], both employ multiple features of the musical sur-
face. In this paper, we do not compare the RGAE with
these models, as they are more specialized on the musi-
cal domain, by explicit selection of (computed) features.
We compare the RGAE to the currently best performing
general connectionist sequence model, the RTDRBM [1].
Its architecture is similar to the well-known RTRBM pro-
posed in [27], but it employs a different cost function.

For structured sequence generation, Markov chains to-
gether with pre-defined repetition structure schemes were
employed in [4], where specific methods for handling tran-

sitions between repeating segments were proposed; in [20],
where an approach to a controlled creation of variations
was introduced; in [5], where chords were generated, obey-
ing a pre-defined repetition structure. In [12], a convolu-
tional restricted Boltzmann machine was employed, and
different structural properties were imposed using differ-
entiable soft-constraints and gradient descent optimization.
A constrained variable neighborhood search to generate
polyphonic music obeying a tension profile and the repe-
tition structure from a template piece was proposed in [7].
In [6], Markov chains and evolutionary algorithms were
used to generate repetition structure for Electronic Dance
Music.

3. MODELS

3.1 Gated Autoencoder

A GAE learns first-order derivatives between its input and
its output. In musical sequences, this amounts to learning
pitch intervals, which are represented as distinct codes in
its latent space. In reconstruction, it applies learned inter-
val codes to pitches in order to transpose them. Its ability to
learn and to perform musical transformations is, however,
not limited to single intervals. For example, it was shown
in [11], that more complex musical transformations like di-
atonic transposition can be learned by a GAE and can be
applied to an unseen material. Intervals are encoded in the
latent space of the GAE, denoted as mappings

mt+1 = σq(Wm(Qxtt−n ·Vxt+1)), (1)

where xt+1 is a binary vector encoding active notes at time
step t+1 as on-bits, xtt−n contain the concatenated vectors
of the last n time steps, Q,V and Wm are weight matri-
ces, and σq is the softplus non-linearity. The operator ·
(indicated as a triangle in Figure 1) depicts the Hadamard
product of the filter responses Qxtt−n and Vxt+1, denoted
as factors. This operation allows the model to relate its
inputs, making it possible to learn interval representations.

GAEs are often trained by minimizing the symmetric
error when reconstructing the output from the input and
vice versa. In the proposed RGAE architecture, we use
predictive training and just learn to reconstruct the target
xt+1 from the input xtt−n and the mapping mt+1 as

x̃t+1 = σg(V
>(W>

mmt+1 ·Qxtt−n)), (2)

where σg is the sigmoid non-linearity. The GAE portion of
the RGAE is pre-trained by minimizing the binary cross-
entropy loss of the reconstruction as

L(x, x̃) = − 1

N

N∑
n=1

[
xn log2 x̃n+(1−xn) log2(1−x̃n)

]
.

(3)

3.2 Recurrent Gated Autoencoder

The proposed model is a combination of a gated autoen-
coder (GAE) and a recurrent neural network (RNN) as de-
picted in Figure 1. The GAE learns relative pitch (i.e., in-
terval) representations of the musical surface, and the RNN
learns their temporal dependencies.
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Figure 1: Schematic illustration of the proposed recurrent
gated autoencoder architecture. Arrows represent weight
matrices, rounded rectangles represent vectors. The trian-
gles depict the Hadamard product. The specifics of the
gated recurrent unit are omitted for better clarity.

We use gated recurrent units (GRUs) [2] for the RNN
portion of the RGAE. This type of units have been shown
to be often as efficient as long short-term memory units
(LSTMs, [9]) while being conceptually simpler [3]. It is
intuitively clear that any RNN variant can be potentially
attached on a GAE. The input to the RNN at time t is the
GAE’s mapping mt, resulting in the following specifica-
tion:

zt = σg(Wzmt +Uzht−1 + bz), (4)

rt = σg(Wrmt +Urht−1 + br), (5)

ht = zt ·ht−1+(1−zt)·σh(Whmt+Uh(rt ·ht−1)+bh),
(6)

where ht is the hidden state at time t, zt is the update gate
vector, rt is the reset gate vector, and W, U and b are pa-
rameter matrices and vectors. The RNN predicts the next
mapping of the GAE as

m̃t+1 = σq(Uoht), (7)

which is used to reconstruct the target configuration at t+1
as

x̃t+1 = σs(V
>(W>

mm̃t+1 ·Qxtt−n)) . (8)

Here, we use the softmax non-linearity σs, as the data
the RGAE is trained on is monophonic. The full architec-
ture is trained with Backpropagation through time (BPTT)
to minimize the categorical cross-entropy loss for the re-
constructed target as

L(x, x̃) = − 1

N

N∑
n=1

xn log2 x̃n . (9)

When the RGAE is applied to polyphonic music, in
Equation 8 the sigmoid non-linearity, together with the bi-
nary cross-entropy loss (cf. Equation 3) has to be used.

3.3 Baseline RNN

As a baseline, we employ an RNN with GRUs to directly
operate on the data. Accordingly, Equations 4, 5, and 6 are

adapted to take xt instead of mt as input. Consequently,
the prediction of the baseline RNN amounts to

x̃t+1 = σs(Uoht), (10)

where the softmax non-linearity is applied, making the cat-
egorical cross-entropy loss (cf. Equation 9) applicable in
training.

4. GATED AUTOENCODER PRE-TRAINING

Due to the relatively high number of parameters in its GAE
portion, the RGAE is prone to overfitting. To circumvent
this, and to establish robust interval representations, we
pre-train the GAE first, using the cross-entropy of the re-
construction as the cost function (cf. Equation 3). In the
second training iteration, we train the RNN portion of the
GAE to minimize the cross-entropy error of the architec-
ture’s prediction (cf. Equation 9). The datasets may differ
between the training iterations as long as the included rela-
tions are identical (e.g. “intervals of western tonal music”).
Consequently, the GAE parameters trained on one dataset
can be used for prediction tasks on several datasets. Fine-
tuning the whole architecture in the last few epochs of pre-
dictive training can make up for possible bias.

In the following, we describe how the GAE is pre-trained
in our experiments. Details varying between the experi-
ments are given later in the experiments section (cf. Sec-
tion 5).

4.0.1 Enforcing Transposition-Invariance

A property of interval representations in music is trans-
position invariance (i.e., transposing the melody does not
change the representation). Although training the GAE as
described in Section 3.1 naturally tends to lead to similar
mapping codes for input target pairs that have the same
interval relationships, the training does not explicitly en-
force such similarities and consequently the mappings may
not be maximally transposition invariant. Therefore, when
pre-training the GAE, we explicitly support the learning of
transposition-invariant codes. First, we define a transposi-
tion function shift(x, δ), which shifts the bits of a vector x
of length M by δ pitches:

shift(x, δ) = (x(0+δ) mod M , . . . , x(M−1+δ) mod M )>,
(11)

where shift(xtt−n, δ) denotes the transposition of each sin-
gle time step vector before concatenation and linearization.

The altered training is then as follows: First, the map-
ping code mt+1 of an input/target pair is inferred as shown
in Equation 1. Then, mt+1 is used to reconstruct a trans-
posed version of the target from an equally transposed in-
put (modifying Equation 2) as

x̃′t+1 = σg(V
>(W>

mmt+1 ·Qshift(xtt−n, δ))), (12)

with δ ∈ [−30, 30]. Finally, we penalize the error between
the reconstruction of the transposed target and the actual
transposed target (i.e., employing Equation 3) as

L(shift(xt+1, δ), x̃
′
t+1). (13)
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The transposition distance δ is randomly chosen for each
training batch. This method amounts to both, a form of
guided training and data augmentation.

4.0.2 Pre-training and Architecture

We use 512 units in the factor layer and 64 units in the
mapping layer of the GAE. On the latter, sparsity regular-
ization [14] is applied. The deviation of the norms of the
columns of both weight matrices U and V from their av-
erage norm is penalized. Furthermore, we restrict these
norms to a maximum value. The learning rate is reduced
from 0.001 to 0 during training, and RMSProp [8] is used.

5. EXPERIMENTS

5.1 Experiment 1: Folk Song Prediction

We test the RGAE and RNN in a sequence learning task
using the data described in Section 5.1.1. In order to make
the results comparable, we use the same experiment setup
as in [1, 22].

5.1.1 Data

The EFSC subset (comprising a total of 54,308 note events)
of the Essen Folk Song Collection (EFSC) [24] constitutes
the data for the actual training and evaluation. It consists
of 119 Yugoslavian folk songs, 91 Alsatian folk songs, 93
Swiss folk songs, 104 Austrian folk songs, the German
subset kinder (213 songs), and 237 songs of the Chinese
subset shanxi. The melodies are represented as series of
pitches ignoring note durations.

For pre-training the GAE portion of the RGAE, we use a
polyphonic Mozart piano music dataset ( [29], comprising
13 piano sonatas with more than 106,000 notes) in piano-
roll representation (i.e., using a regular time grid of 1/8th
note resolution, and an active note can span several time
steps). We pre-train on that data because polyphonic music
acts as a better regularizer for learning interval representa-
tions than monophonic music.

5.1.2 Training and Architecture

We use only 16 hidden units in the RNN portion of the
RGAE. The look-back window of the GAE is n = 8 pitches,
and we apply 50% dropout on the input in pre-training
and when training the whole architecture. We pre-train the
GAE for 250 epochs on the Mozart piano pieces (cf. Sec-
tion 5.1.1). Subsequently, the RNN portion is trained for
110 epochs on the interval representations (i.e., mappings
provided by the GAE) of the EFSC datasets. In the last 10
epochs the whole architecture is fine-tuned.

The baseline RNN with 50 hidden units is trained for
70 epochs on the EFSC data. The learning rate scheme is
adopted from that described in Section 4.0.2 for all models.

5.1.3 Combining Model Predictions

We hypothesize that the RNN and the RGAE are comple-
mentary in how they process musical sequences. For ex-
ample, the RNN may have better stability in remembering
absolute reference pitches, like the tonic of a piece, and

is superior in modeling prior probabilities, to keep predic-
tions in a plausible pitch range. In contrast, the RGAE can
make use of structural cues indicating repetitions and can
generalize better due to relative pitch processing. There are
several possibilities to combine the predictions of statisti-
cal models. Next to the ad-hoc approach of merely aver-
aging their outputs, we can also use information about the
certainty of the models and weight their outputs accord-
ingly. A measure for the certainty of a prediction is given
by the Shannon entropy [26]:

H(p) = −
∑
a∈A

p(a) log2 p(a), (14)

where p(a ∈ A) = P (X = a) is a probability mass func-
tion over a discrete alphabetA. The method which worked
best in our experiments is calculating the entropy-weighted
geometric mean of both predictions, as proposed in [21]:

p(t) =
1

R

∏
m∈M

pm(t)wm , (15)

where pm(t) is the predicted distribution of model m at
time t, wm = Hrelative(pm)−b is the weight of model m,
non-linearly scaled using a bias b (set to 0.5 in our exper-
iments), and R is a normalization constant. The relative
entropy Hrelative(pm) for model m is given by

Hrelative(pm) =
H(pm)

Hmax(pm)
, (16)

whereHmax(pm) > 0 is the entropy of the probability mass
uniformly distributed over the alphabet (indicating maxi-
mal uncertainty of the model).

5.1.4 Evaluation

Since the datasets are rather small, a fixed training/test set
split would lead to a poor estimation of the performance of
the models. Therefore, and in accordance with [1, 22], a
10-fold cross validation is performed for each dataset and
the categorical cross-entropy loss (cf. Equation 9) is re-
ported.

5.1.5 Results and Discussion

The results are shown in Table 1. The current state-of-
the-art results for general connectionist sequence models
on the datasets are achieved by the RTDRBM model in-
troduced in [1]. The results show that the RGAE slightly
outperforms the RTDRBM and is clearly superior to the
baseline RNN. Note that the RGAE only has 16 units for
learning temporal dependencies (the GAE portion mainly
transforms absolute pitch input to relative pitch represen-
tations). This compactness suggests that the relative pro-
cessing of music indeed supports generalization by reduc-
ing the sparsity in the data.

When combining the predictions of the RGAE with an
absolute pitch model (i.e., RNN or RTDRBM) based on
the entropy-weighted geometric mean (cf. Section 5.1.3), a
more substantial improvement is achieved than when com-
bining the two absolute pitch models. This result shows

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 29



RNN RTDRBM [1] RGAE RNN + RNN + RTDRBM +
Data (GRU) RTDRBM RGAE RGAE

Alsatian folk songs 2.890 2.897 2.872 2.844 2.788 2.771
Yugoslavian folk songs 2.717 2.655 2.676 2.617 2.586 2.530
Swiss folk songs 2.954 2.932 2.895 2.851 2.831 2.769
Austrian folk songs 3.185 3.259 3.171 3.163 3.070 3.085
German folk songs 2.358 2.301 2.305 2.257 2.233 2.184
Chinese folk songs 2.725 2.685 2.752 2.612 2.650 2.595

Average 2.805 2.788 2.779 2.724 2.693 2.656

Table 1: Cross-Entropies of the 10-fold cross validation in the prediction task for different data sets and different models.
When combining the RGAE with an absolute pitch model (i.e., RNN, RTDRBM), results improve substantially. The
results suggest that absolute and relative pitch models are complementary in the aspects they learn about music and can be
effectively used in an ensemble method.

that absolute and relative processing of music are comple-
mentary and can, therefore, be effectively used together in
an ensemble method.

5.2 Experiment 2: Copy-and-Shift Operations

This experiment shall be seen as a proof-of-concept for the
RGAEs ability to learning sequences of copy-and-shift op-
erations (i.e., structure schemes). We oppose our model to
an RNN with GRUs, which is known to have difficulties to
learn tasks in the form “whatever has been generated be-
fore, now create a (shifted) copy of it”. The hypothesis is
that the RGAE, due to its modeling of intervals, is superior
in solving this task. It has shown in previous studies that
it can learn content-invariant transformations between data
instances [16], a necessary capability for learning content-
invariant structure schemes.

5.2.1 Data

In order to obtain a controlled setup for testing the model
performances, we construct data obeying different recur-
ring (chromatic) transposition patterns. To this end, the
EFSC dataset is transformed into a piano-roll representa-
tion with a resolution of 1/8th note. From that, short frag-
ments of length 4, 8, and 16 (≤ the length of the recep-
tive field of the input to the models) are randomly sampled
(rests are omitted). It is necessary that the RGAE has ac-
cess to all past events with which the prediction should be
related. Choosing longer fragment lengths than the lengths
of the receptive fields yields considerably worse results,
also for the baseline RNN, which already performs weakly
in this setup. The fragments are copied and transposed ac-
cording to some pre-defined transposition schemes (cf. Ta-
ble 2). For each of the 10 schemes and fragment lengths,
26 sequences (512 time steps each, resulting in 133 120
time steps) are generated, where 20 sequences are used for
training, 5 sequences are used for testing and 1 for evalu-
ation. This results in a total of 600 sequences for training,
150 sequences for testing and 30 sequences for evaluation.

5.2.2 Training and Architecture

The lookback window of the RGAE is n = 16 time steps,
the RNN portion has 64 units, and we do not use dropout
on the input. For the baseline RNN, we also input the 16
preceding time steps, as this supports copy operations by

Transposition Schemes

{+5,+5,+5, . . . }
{+7,+7,+7, . . . }
{−5,−5,−5, . . . }
{−7,−7,−7, . . . }
{+12,−12,+12, . . . }
{+3,−3,+3, . . . }
{+4,−4,+4, . . . }
{+9,−9,+9, . . . }
{+4,−8,+4,−8, . . . }
{−4,+8,−4,+8, . . . }

Table 2: The different relative transposition schemes used
in Experiment 2.

freeing up memory in the hidden units. The baseline RNN
model size (512 units) is selected by starting from 64 units
and always doubling that number until no substantial im-
provement occurs on the evaluation set.

The GAE portion of the RGAE is pretrained for 50 ep-
ochs on the structured sequences described above. Sub-
sequently, the RGAE is trained for 50 epochs, holding the
parameters of the GAE fixed. As the data of the pretraining
does not differ from the sequences in the prediction task,
finetuning is not necessary.

The baseline RNN is trained for 60 epochs. Again, for
both models the learning rate scheme described in Sec-
tion 4.0.2 is employed. Note that in this task, we always
randomly transpose the input to the models in all training
phases. Therefore, we need no dropout on the input of the
RGAE, and the baseline RNN does not overfit, despite its
high number of parameters.

5.2.3 Evaluation

The models have to learn to continue sequences from the
test set after exposition to the first 64 time steps of each
sequence. The experiment is different to typical prediction
tasks in that possibly incorrect predictions are fed back to
the models, causing errors to accumulate. To obtain more
stable continuations, we do not sample from the predicted
distributions of the models, but instead, treat the exper-
iment as a classification task and choose the pitch with
the highest predicted probability. Accordingly, the preci-
sion is merely the percentage of correctly predicted pitches
over time. In addition, we quantify how many sequences
are correctly continued until the end by considering all se-
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Model Pr (%) > 99% CE # Params

RNN 41.38 6.67 10.10 ∼ 2 300 000
RGAE 99.43 92.00 0.16 ∼ 600000

Table 3: Results of the structure learning task. Average
precision (Pr), percentage of continuations above 99% pre-
cision, cross-entropy (CE) and number of parameters of the
respective model.

RGAE RNN
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Figure 2: Distribution of precisions for continuation of
sequential copy-and-shift operations in the test set of size
150. The median is marked with a orange line, the boxes
indicate the interquartile range, and circles indicate out-
liers.

quences with an overall precision above 99% as correctly
continued. Furthermore, like in Experiment 1, the categor-
ical cross-entropy loss (cf. Equation 9) is computed.

5.2.4 Results and Discussion

Table 3 shows the quantitative results of the experiment,
and Figure 2 shows a box plot comparing the precisions
of the two models. With an average precision of 99.43%
percent, where 92% of all examples are flawlessly contin-
ued, the RGAE shows remarkable stability in continuing
the structure scheme realizations. The cross-entropy of the
RGAE is about two orders of magnitude lower than that
of the RNN. In Figure 3, a specific example of this se-
quence continuation task is depicted. Note that the hid-
den unit activations of the RGAE are more regular because
they only represent copy-and-shift operations instead of
the musical texture itself (as it is the case for the RNN).
The most challenging part for the RGAE is counting, in
order to change the copy operation (i.e., transposition dis-
tance) at the right time (in fact, at most of the incorrectly
continued sequences, the RGAE miscounted by one time
step). It is important to note that the hidden unit activations
of the RNN portion are identical for identical schemes,
because they operate on transformations between events,
rather than on the events themselves (i.e., they are largely
content-invariant).

6. CONCLUSION AND FUTURE WORK

The principle of modeling sequences of first-order deriva-
tives in music is a compelling concept with the potential
to solve two persistent problems in MIR: Learning trans-
position-invariant interval representations, and learning rep-
resentations of (chromatically transposed) repetition struc-
ture. The proposed model is conceptually simple and can
be trained as a generative model in sequence learning tasks.

Figure 3: Generated structure schemes and hidden unit
activations of the RGAE and the RNN models after input
of a primer indicating the {−4,+8,−4,+8, . . . } scheme,
realized with melodies of length 16 not contained in the
train set. Black notes indicate correct continuation, green
notes indicate false negatives, red notes indicate false pos-
itives. Hidden units activations of the RNN are pruned due
to space limitation.

Moreover, the RGAE can act as a building block for
more complex architectures, in order to extend its capabili-
ties. For example, the temporal lookback window could be
greatly extended by employing the RGAE on top of a (di-
lated) convolutional network, enabling it to learn higher-
level repetition structure. In another variant, an RGAE
could be employed on top of an RNN. Applied to music,
the RNN would provide the RGAE with representations of
important, absolute reference pitches (e.g., the tonic of a
scale, or the root note of a chord), and the RGAE could
learn sequences of intervals in relation to them. Another
interesting architecture would involve stacking more than
one RGAE on top of one another to learn higher-order
derivatives, for example, variations between mutually trans-
posed parts in music.

The RGAE, however, is not limited to the symbolic,
monophonic, domain of music. We show in [13] that a
GAE can also operate in the spectral domain of audio and
in polyphonic symbolic music. Finally, we note that the
RGAE is general enough to be applicable to other domains
where the derivatives of functions are of higher importance
than their absolute course. Possible applications include
modeling temporal progressions of changes in loudness,
tempo, mood, information density curves, and other musi-
cal properties, modeling moving or rotating objects, cam-
era movements in video recordings, and signals in the time
domain.
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