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ABSTRACT

Automatic Drum Transcription (ADT), like many other mu-
sic information retrieval tasks, has made progress in the past
years through the integration of machine learning and audio
signal processing techniques. However, with the increasing
popularity of data-hungry approaches such as deep learning,
the insufficient amount of data becomes more and more
a challenge that concerns the generality of the resulting
models and the validity of the evaluation. To address this
challenge in ADT, this paper first examines the existing
labeled datasets and how representative they are of the re-
search problem. Next, possibilities of using unlabeled data
to improve general ADT systems are explored. Specifically,
two paradigms that harness information from unlabeled
data, namely feature learning and student-teacher learning,
are applied to two major types of ADT systems. All sys-
tems are evaluated on four different drum datasets. The
results highlight the necessity of more and larger annotated
datasets and indicate the feasibility of exploiting unlabeled
data for improving ADT systems.

1. INTRODUCTION

Automatic drum transcription (ADT), a sub-task of Auto-
matic Music Transcription (AMT) [2] that concerns the
extraction of drum events from music signals, witnesses a
growth in data-driven approaches such as deep learning in
recent years [24, 25, 31–33]. The majority of these ADT
studies use the popular ENST-Drums dataset [11] for de-
velopment by splitting the dataset into different subsets for
training, validation, and testing purposes. Nevertheless,
the limited amount of labeled data and its potential impact
on ADT systems are rarely discussed. The heavy reliance
on one dataset raises two major concerns: (i) the model
could easily overfit the data, which questions its generality,
and (ii) the evaluation results could be overly optimistic
due to the small sample size of the split. To avoid these
pitfalls, larger datasets and cross-dataset evaluation are nec-
essary. This need has been identified by researchers and
has been addressed with newly released annotated datasets
such as MDB-Drums [26] and RBMA [33]. These new
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data enable us to revisit ENST-Drums and re-examine the
representativeness of this widely-used dataset through a
unified comparison.

Motivated by the above mentioned issues concerning the
data in ADT, this paper aims to address the challenge from
two different angles, (i) examining the effectiveness of the
existing datasets and (ii) investigating additional resources
(e.g., unlabeled data) and techniques for supporting the
development of general ADT systems. The contributions
of this work include: first, the examination of four differ-
ent datasets, highlighting the importance of data diversity.
Second, the evaluation of two paradigms for integrating
unlabeled data to two major types of ADT systems. Third,
the demonstration of potential improvements of both types
of ADT systems on different drum instruments using unla-
beled data.

2. RELATED WORK

2.1 Automatic Drum Transcription

The task of automatic drum transcription can be described
as converting drum related audio events into music notation.
Most of the early ADT systems, as summarized by FitzGer-
ald and Paulus [9], detect onsets of HiHat (HH), Bass Drum
(BD), and Snare Drum (SD) in drum only recordings. Re-
cently, this focus has shifted towards transcribing drums
in polyphonic mixtures comprised of both percussive and
melodic instruments. Following these conventions, this pa-
per defines the ADT task as detecting HH, BD, and SD in
polyphonic mixtures.

Generally speaking, the existing ADT systems can be cat-
egorized into four types according to the literature [12, 19].
These are (i) Segment and Classify: following the standard
pattern recognition pipeline, these approaches extract audio
features from detected onset locations and classifies them
with pre-trained models; this is a popular approach with
many proposed systems using different combinations of
classifiers and features [10, 12, 27, 28], (ii) Separate and
Detect: deriving activation functions from recordings to rep-
resent the activities of each drum, these systems subsequen-
tially perform onset detection on these activation functions
to locate drum hits; approaches include matrix factoriza-
tion methods such as Non-negative Matrix Factorization
(NMF) [6,23,35] and deep-learning-based methods such as
Recurrent Neural Networks (RNNs) [24,31,32] and Convo-
lutional Neural Networks (CNNs) [25, 33], (iii) Match and
Adapt: identifying drum events by comparing with a set of
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Figure 1. The overview of the evaluated paradigms for
integrating unlabeled data to two major ADT approaches

pre-defined templates, these systems often iteratively up-
date the templates [38], and (iv) HMM-based Recognition:
modeling the temporal connections between drum events
using probabilistic models such as Hidden Markov Models
(HMMs), these models try to identify the underlying drum
sequence by using the Viterbi algorithm [7, 20].

To date, the majority of the existing ADT systems fall
into the categories of Segment and Classify and Separate
and Detect. Both these types of systems, despite having
fundamental differences, use data-driven methods and face
the challenge described in Sect. 1. Therefore, in this paper,
we considered both types of systems in our experiments.

2.2 Learning from Unlabeled Data

To address the data challenge in MIR tasks, techniques that
build upon the existing labeled data have been proposed.
For example, in transfer learning [4], a deep neural network
trained on a task that has sufficient data can be used to derive
features for another task with limited data. This method alle-
viates the data insufficiency by re-using the effective models
in the similar domains. Data augmentation, a technique
to increase diversity of training data through music-related
deformations (e.g., time-stretching, pitch shifting, or distor-
tion) and synthesis, has been successfully applied to MIR
tasks [18] and in ADT specifically [32, 36]. However, these
techniques still require a reasonably sized correctly anno-
tated dataset as a starting point, which remains a challenge
in certain scenarios.

Another direction for addressing the data scarcity is to
use unlabeled data. Intuitively, a large collection of un-
labeled data can be helpful in deriving more generalized
features. This is the main concept of unsupervised feature
learning, and it can be implemented with algorithms such
as Sparse Coding [22], Deep Belief Networks [13], and
Auto-encoders [17]. More recently, the student-teacher
learning paradigm has also emerged as an interesting con-
cept to incorporate unlabeled data. Referred by Hinton et
al. as “knowledge distillation” [14], this paradigm transfers
the knowledge of a teacher model to a student model us-
ing the soft-targets generated by the teacher. As opposed
to learning from the hard targets (i.e., ground truth), the
student learns from the “dark knowledge” residing in the
soft-targets, which can be created using either labeled or
unlabeled data [15]. A successful student model can reduce
the complexity of the original teacher model without signif-
icant performance loss. Several studies also report superior
performance of the student models [5, 34, 37]. Overall,
methods that work directly with unlabeled data obviously
have less dependency on existing labeled data and have
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Figure 2. The flowchart of the feature learning paradigm
for ADT

higher potential to be applicable to more tasks.

3. METHOD

3.1 Overview

To connect general ADT systems to the abundant resources
of unlabeled data, this paper investigates the application of
feature learning and student-teacher learning to Segment
and Classify-based and Separate and Detect-based ADT
systems, respectively. Figure 1 shows the two paradigms for
integrating unlabeled data to ADT systems as investigated
in this paper. The feature learning paradigm is designed for
Segment and Classify-based ADT systems. In this paradigm,
the unlabeled data is used to derive a feature extractor using
an unsupervised feature learning algorithm. The resulting
feature extractor is then integrated into a generic Segment
and Classify ADT framework. The student-teacher learning
paradigm is suitable for Separate and Detect-based ADT
systems. This paradigm uses teacher models and unlabeled
data to generate soft-targets; these soft-targets play the
important role of connecting any Separate and Detect-based
system with unlabeled data and enable the training of the
student model. In the following sections, more details of
both paradigms are presented.

3.2 Feature Learning

The flowchart in Fig. 2 shows the feature learning paradigm
for ADT, including both training and testing. The training
phase starts with the training of a feature extractor using the
unlabeled data. Specifically, we use a Convolutional Auto-
encoder (CAE) as the feature extractor. A generic Segment
and Classify-based ADT system is then constructed with
the following steps: first, the features are extracted from the
audio signals using the pre-trained feature extractor. Sec-
ond, the onset locations are determined by using the ground
truth annotations while training. Finally, the feature vectors
around the onset locations are collected and used to train
three binary classifiers for HH, BD, and SD, respectively.
The classifiers used in this paper are Support Vector Ma-
chines (SVMs). In the testing phase, the same pipeline is
followed except for the onset detection step, which uses
an onset detector instead of the ground truth locations. Fi-
nally, the presence of each drum can be predicted using the
pre-trained SVMs.

The architecture of the CAE is shown in Fig. 3. The
input X of the CAE is a Mel-spectrogram, and the output
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Figure 3. The architecture of the proposed CAE for un-
supervised feature learning. The input X is a 128 × N
Mel-spectrogram.

X ′ is the reconstruction of X . The encoder consists of four
convolutional layers with {32, 16, 8, 4} channels of 3× 3
kernels, accordingly. Each convolutional layer is used by a
batch normalization layer and a max-pooling layer of (2, 1).
This design maintains the temporal resolution, allowing the
extraction of block-wise features. The bottleneck layer is
also a convolutional layer with 4 channels of 3× 3 kernels.
All non-linear units are Rectified Linear Units (ReLUs).
The structure of the decoder is symmetric to the encoder
with the max-pooling layers replaced by the up-sampling
layers. The CAE is trained to minimize the Mean Squared
Error (MSE) between X and X ′ using a gradient-descent-
based optimization process, and the number of training
epochs is 30.

The feature extraction process, as shown in Fig. 3, is
inspired by the method proposed by Choi et al. [4]: first, the
intermediate activation maps from all the layers in the en-
coder (including the bottleneck layer) are computed. Next,
average pooling is performed on these maps across the Mel-
frequency axis. Finally, these outputs are stacked into a
64×N feature matrix, where N is the number of blocks.
To derive the final feature vector at each block, the feature
vectors from the current block and the following two blocks
are spliced together to capture the temporal variations of
the event. This leads to a final feature vector with a dimen-
sionality d = 3× F , in which F is the number of features
(i.e., 64).

In addition to the learned features, a set of baseline fea-
tures consisting of 20 Mel Frequency Cepstral Coefficients
(MFCCs) and their first and second derivatives is also in-
cluded in this paradigm. As a result, the baseline feature
vector has a dimensionality d = 3 × 60 = 180 after the
feature splicing.

3.3 Student-Teacher Learning

Figure 4 shows the flowchart of the student-teacher learning
paradigm for ADT. In the training phase, the teacher models
are used to analyze the unlabeled data and generate the soft-
targets. These soft-targets, used as pseudo ground truth to
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Figure 4. The flowchart of the student-teacher learning
paradigm for ADT

train a student model, contain the activation functions for
the different drums. When multiple teachers are present,
the student model can be trained by iteratively passing the
unlabeled data and its corresponding soft-targets from each
teacher. The student model is trained by minimizing the
MSE between the soft-targets and the model outputs. In the
testing phase, the trained student model processes the test
data and generates the corresponding activation functions.
The estimated locations of drum hits are identified with a
simple peak picking process.

The model architecture, configuration, and parametriza-
tion of this evaluated paradigm generally follows the setup
described in [37]. This includes two teacher models based
on Partially-Fixed NMF (PFNMF) [35] and one student
model using a fully-connected, feed-forward Deep Neural
Network (DNN). The soft-targets are scaled to a numerical
range between 0 and 1 using min-max scaling across the
training data for each instrument in order to ensure their
compatibility with the outputs from the student DNN.

3.4 Implementation

The main input representations for both paradigms are de-
rived from the magnitude spectrogram of the Short Time
Fourier Transform (STFT), which is computed using a block
size of 2048 and a hop size of 512 samples with Hann win-
dow. All of the audio signals are normalized to a range
between 1 and -1, down-mixed to mono, and resampled to
44.1 kHz prior to the computation of STFT.

For the feature learning paradigm, both the Mel-
spectrogram in dB scale with 128 bins and the MFCCs
are computed using librosa, 1 a Python library for audio sig-
nal processing. The onset detection is implemented using
the CNNOnsetProcessor from Madmom. 2 Additionally,
the implementation of Linear SVMs from scikit-learn, 3 a
Python library for machine learning, is used. A grid search
on the penalty parameter C within {0.1, 1, 10, 100, 1000}
is performed to optimize the performance of the SVMs.

For student-teacher learning paradigm, the teacher mod-
els are implemented using the PFNMF function from Nmf-
DrumToolbox. 4 The peak-picking parameters are set to
the same as in the original paper [37].

1 https://librosa.github.io, last access 2018/03/27
2 https://madmom.readthedocs.io/en/latest/, last access 2018/03/27
3 http://scikit-learn.org/stable/, last access 2018/03/27
4 https://github.com/cwu307/NmfDrumToolbox, last access 2018/03/27
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The neural networks in both paradigms are implemented
using Keras 5 and the Tensorflow [1] backend. The weights
are randomly initialized with normal distributions, and the
parameters of the ADAM optimizer are set to default. The
source code used in this paper is available on Github. 6

4. EXPERIMENT

4.1 Unlabeled Data

The unlabeled dataset in this paper is built using the source
code provided in [37]; this tool allows the compilation of
a list of songs from the Billboard Chart 7 and the retrieval
of these songs from Youtube. This dataset consists of six
musical genres, including R&B/HipHop, Pop, Rock, Latin,
Alternative, and Dance/Electronic. Each genre has 1900
songs, which leads to a collection of 11400 songs. All the
songs are cross-checked for duplicates and converted to
mp3 format with a sampling rate of 44.1 kHz. In our exper-
iments, this dataset is further split into training, validation,
and testing set with a percentage of 70%, 15%, and 15%,
respectively. To speed up the process while maintaining the
diversity, only a 30 s segment is extracted from each song
for training. The segment starts in the middle of the song to
avoid potential inactivity at the beginning. As a result, the
entire training set has a total duration of 66.5 hrs, which is
significantly larger than any existing ADT dataset. The list
of songs and links are available on Github. 8

4.2 Labeled Data

In this paper, four different labeled datasets featuring poly-
phonic mixtures are used: (i) the popular ENST-Drums (re-
ferred to as ENST) [11], (ii) the MIREX 2005 (referred to
as m2005),(iii) the MDB-Drums (referred to as MDB) [26],
and (iv) the RBMA dataset [33]. The latter three public sets
have been used in the 2017 Music Information Retrieval
Evaluation eXchange (MIREX) 9 drum transcription task.

ENST minus one subset consists of 64 recordings per-
formed by three different drummers on their own drum
kits. The average duration of the recordings is 55 s. These
recordings feature different musical genres and playing
styles, and the multi-track files are available for remixing.
In this paper, the accompaniments are mixed with their cor-
responding drum tracks using a scaling factor of 1/3 and 2/3,
respectively. This setup is consistent with several previous
studies [24, 31, 35].

m2005 was originally collected for the first MIREX
drum transcription task in 2005 and recently made avail-
able for MIREX 2017 drum transcription task participants.
The public set includes 23 recordings contributed from all
the participants of MIREX 2005. While covering a variety
of musical genres, J-pop has the highest presence in this

5 https://keras.io, last access 2018/03/27
6 https://github.com/cwu307/ADT with unlabeledData, last access

2018/06/14
7 https://www.billboard.com/charts, last access 2018/03/27
8 https://github.com/cwu307/unlabeledDrumDataset, last access

2018/06/14
9 http://www.music-ir.org/mirex/wiki/2017, last access 2018/03/27

dataset with 10 recordings. The average duration of this
dataset is 125 s.

MDB consists of 23 recordings of the MusicDelta sub-
set from the MEDLEYDB dataset [3]. These recordings
include a variety of musical genres such as Rock, Coun-
try, Disco, Reggae, and Jazz. The average duration of the
recordings is 54 s. Similar to ENST, this dataset contains
multi-track files as well as the full mixtures. In this paper,
we use the full-mixtures directly without any adjustment of
the mixing levels.

RBMA was released as part of the public set for the
MIREX 2017 drum transcription task. This public set in-
cludes 27 recordings featuring mostly Electronic Dance
Music (EDM). The average duration of the tracks is 230 s.
Since this dataset focuses on electronic music, it contains
electronic drum sounds that can be distinctively different
from the other three datasets.

In total, there are 137 files with annotations available for
evaluation. All files have a sampling rate of 44.1 kHz.

4.3 Metrics

The evaluation metrics in this paper are Precision (P), Re-
call (R), and F-measure (F). Only the averaged F-measure
is reported due to the limited space. These metrics are
implemented using mir eval, a Python library of common
MIR metrics [21]. To determine whether an onset is a
match with the ground truth, a tolerance window of 50 ms
on both sides is used. This setting is consistent with the
literature [12, 24, 35], although some authors use smaller
tolerance windows such as 30 ms [20] and 20 ms [32].

4.4 Experiment Setup

This paper evaluates 9 ADT systems, comprising 4 systems
for the feature learning paradigm and 5 systems for the
student-teacher learning paradigm. The configurations of
these systems are described as follows:

For the feature learning paradigm, the 4 systems are
differentiated by their features. These features are:

(i) MFCC: this set of features has shown its effectiveness
in previous ADT studies [20, 27, 29]. Therefore, it is
included as a baseline.

(ii) CONV-RANDOM: this set of features is extracted
using the proposed CAE architecture with all the
weights randomly initialized without further training.
This is another baseline inspired by [4] to serve as a
sanity check for the effectiveness of the unsupervised
training process.

(iii) CONV-AE: this is the set of features extracted from
the proposed CAE after training. During the training
procedure, the original input is used as the target for
optimization. In other words, the CAE is trained to
reconstruct the input.

(iv) CONV-DAE: this set of features is similar to CONV-
AE except for the optimization target. In this case, a
processed input is used as the target. Specifically, the
percussive component from the Harmonic Percussive
Source Separation (HPSS) [8] algorithm is used, and
the CAE is trained to approximate the percussive
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Figure 5. The evaluation results of all labeled datasets with
averaged F-measure across all systems.

component. This configuration is inspired by the
concept of the Denoising Autoencoder (DAE) [30]
and is designed to encourage the extraction of
drum-related features.

The teacher models for student-teacher learning
paradigm are described in [37]. The 3 student models can
be differentiated by their training data. The systems are:

(i) PFNMF (SMT): a teacher PFNMF initialized with the
drum templates extracted from the IDMT-SMT-Drum
dataset [6].

(ii) PFNMF (200D): a teacher PFNMF initialized with the
drum templates extracted from the 200 Drum Machine
dataset. 10

(iii) FC-200: a fully-connected student DNN trained with
a subset of the unlabeled dataset, which consists of
200 randomly selected songs from each genre.

(iv) FC-ALL: a fully-connected student DNN trained with
all the songs from all genres.

(v) FC-ALL (ALT): a fully connected student DNN
trained with all the songs from only the “Alternative”
genre. This particular genre is selected for its superior
performance in preliminary tests.

Based on these 9 systems, the following experiments are
conducted:

E1: Experiment 1 aims to examine the variance of the
labeled datasets. For each dataset, the averaged
F-measures across all 9 systems are reported.

E2: Experiment 2 aims to evaluate the usefulness of un-
labeled data for Segment and Classify-based ADT
systems using the feature learning paradigm. For
each system, the averaged F-measures across all the
datasets are reported.

E3: Experiment 3 aims to evaluate the usefulness of un-
labeled data for Separate and Detect-based ADT sys-
tems using the student-teacher learning paradigm.
For each system, the averaged F-measures across all
the datasets are reported.

Note that for the feature learning paradigm, a cross-
dataset validation process is performed (e.g., train on three
datasets and test on the remaining one) in order to train
the binary classifiers (see Sect. 3.2). For student-teacher

10 http://www.hexawe.net/mess/200.Drum.Machines/, last access
2018/03/27

Experiments Averaged F-measure
Role System HH BD SD

Baseline MFCC 0.61 0.62 0.40
Baseline CONV-RANDOM 0.61 0.54 0.39

Evaluated CONV-AE 0.61 0.62 0.42
Evaluated CONV-DAE 0.61 0.61 0.42

Table 1. Evaluation results of the feature-learning-
paradigm-based systems.

learning paradigm, since the student model does not need
additional labeled data for training so that a cross-dataset
validation is unnecessary.

4.5 Results

Figure 5 shows the evaluation result of E1. On average, all
systems tend to perform the best on ENST and the worst on
RBMA. For some instruments, this gap can be as large as
22% in F-measure. There are two possible reasons for the
good performance on ENST. First, as many ADT systems,
including Segment and Classify-based and Separate and
Detect-based, have been developed and evaluated on ENST,
there could be potential bias towards this dataset. Second,
the ENST dataset might be relatively simple compared to
the others. A closer examination of the dataset shows a lack
of singing voices and the dominance of MIDI synthesized
accompaniments, which could potentially over-simplify the
ADT problem. The relative poor performance on the RBMA
dataset might be related to its focus on EDM; the electronic
drum sounds with strong audio effects could possibly in-
crease the difficulty for ADT. This seems to be especially
true in case of the SD. Overall, the results show that the
evaluated systems leave much room for optimization; since
many of the parameters in these systems are not extensively
tuned, this result is to be expected. However, this also re-
flects the challenge of building an ADT system that is easily
generalizable.

The results of E2 are shown in Table 1. The following
trends can be observed: first, the unlabeled data seems to be
helpful in Segment and Classify-based ADT systems. A di-
rect comparison between CONV-AE and MFCC shows that
the features learned from unlabeled data seem to slightly im-
prove for SD while achieving equal performance on HH and
BD. Second, the unsupervised training process is useful for
deriving better features. Compared to CONV-RANDOM,
both CONV-AE and CONV-DAE show improvements on
nearly all instruments, indicating the advantage of the train-
ing process. Third, the DAE-inspired training process does
not lead to improvements for ADT. This is shown by the
almost equivalent results from CONV-AE and CONV-DAE.
Since HPSS also introduces artifacts, it might not be the
most ideal method for this task; experimentation with other
source separation algorithms might provide more insights.

Table 3 shows the results of E3. The general trends
can be summarized as follows: first, the student-teacher
learning seems to be useful for Separate and Detect-based
ADT systems as all students show a noticeable improve-
ment on HH over the teacher models. This observation
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Compared Systems Inst. Paradigm Improvement Deterioration
Test Ref # Files F-measure Gain # Files F-measure Loss

CONV-AE MFCC SD Feature Learning 70/137 6.5% 40/137 -4.6%
FC-200 PFNMF (SMT) HH S-T Learning 78/137 13.8% 44/137 -7.6%

Table 2. Significance check of the most improved pair from each paradigm.

Experiments Averaged F-measure
Role System HH BD SD
Teacher PFNMF (SMT) 0.47 0.61 0.45
Teacher PFNMF (200D) 0.47 0.67 0.40
Student FC-200 0.56 0.57 0.44
Student FC-ALL 0.53 0.59 0.42
Student FC-ALL (ALT) 0.55 0.58 0.44

Table 3. Evaluation results of the student-teacher-paradigm-
based systems. The performance of the teacher models are
the baseline.

consolidates the preliminary finding reported in [37]. Sec-
ond, more unlabeled data do not necessarily lead to better
results. For example, FC-200 and FC-ALL (ALT) both out-
perform FC-ALL on HH and SD. Since the student model is
a simple feed-forward DNN, the lack of model capacity and
temporal information could limit its potential for further
improvement as the data size grows. Experiments using
other student models (e.g., CNNs and RNNs) are neces-
sary for confirmation. Third, the student models seem to
struggle on BD. A detailed examination on the individual
results from each dataset shows that teachers and students
are mostly comparable on BD except for RBMA. This is
possibly due to the challenging nature of RBMA as dis-
cussed in E1. However, further investigation is needed
before drawing conclusions.

The results of E2 and E3 show that feature learning and
student-teacher learning paradigms are able to improve the
performance on SD and HH, respectively. In light of these
results, an interesting question is: “Are these improvements
significant?” In an attempt to answer this question, two
pairs of systems are selected for further analysis. Each
pair consists of the best baseline and the best evaluated
system of each paradigm. A t-test is performed on each
pair by comparing their results on all 137 files. Both pairs
have shown significant improvements with p � 0.0014
for both t-tests. Furthermore, the number of improved
and deteriorated files is calculated. The results, shown in
Table 2, show a positive trend: the number of improved files
is, in both cases, greater than the number of deteriorated
files. Moreover, the averaged F-measure gains are also
higher than the averaged F-measure loss for both pairs.

From Table 2, it can be observed that the improvements
on HH from the student-teacher learning paradigm seems
to be more substantial. To further investigate the cause
of this improvement, one example from the ENST dataset,
which has the largest F-measure gain among all files, is
selected. The HH activation functions generated from both
teacher and student model are shown in Fig. 6. Compared
to the teacher’s activation function, the student’s activation
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Figure 6. Example of the (top) teacher’s and (bottom)
student’s HH activation function in comparison.

function is sharper and less noisy, demonstrating the benefit
of this paradigm.

5. CONCLUSION

We discussed the data challenge in ADT and investigated
two approaches to address this challenge by considering
both labeled and unlabeled data. First, we compared sys-
tem performance on multiple existing labeled datasets in an
unified setting. The results indicate a potential bias of rely-
ing on one dataset and highlight the necessity of including
more datasets in the future ADT evaluation. Furthermore,
we evaluated the usefulness of unlabeled data for two major
types of ADT systems via two different learning paradigms,
feature learning and the student-teacher learning approach.
For both paradigms, we got encouraging (and statistically
significant) results demonstrating the potential of achieving
better performance than the baseline systems on different
drum instruments.

These results, while suggesting the need for additional
labeled data in the field of ADT, also encourage the ex-
ploration of incorporating unlabeled data in the training.
Possible future directions include (i) the evaluation of var-
ious methods for unsupervised feature learning such as
Sparse Coding [22] and Deep Belief Networks [13], (ii) the
evaluation of different combinations of teacher and student
models, for example, the combination of different types of
DNN either as teachers or students; the identification of suit-
able architectures for these roles could also be an interesting
direction, and (iii) the application of outlier detection [16]
approaches to filter out noisy unlabeled data.
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