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ABSTRACT

Songs can be well arranged by professional music curators
to form a riveting playlist that creates engaging listening
experiences. However, it is time-consuming for curators
to timely rearrange these playlists for fitting trends in fu-
ture. By exploiting the techniques of deep learning and
reinforcement learning, in this paper, we consider music
playlist generation as a language modeling problem and
solve it by the proposed attention language model with
policy gradient. We develop a systematic and interactive
approach so that the resulting playlists can be tuned flex-
ibly according to user preferences. Considering a playlist
as a sequence of words, we first train our attention RNN
language model on baseline recommended playlists. By
optimizing suitable imposed reward functions, the model
is thus refined for corresponding preferences. The ex-
perimental results demonstrate that our approach not only
generates coherent playlists automatically but is also able
to flexibly recommend personalized playlists for diversity,
novelty and freshness.

1. INTRODUCTION

Professional music curators or DJs are usually able to care-
fully select, order, and form a list of songs which can give
listeners brilliant listening experiences. For a music radio
with a specific topic, they can collect songs related to the
topic and sort in a smooth context. By considering pref-
erences of users, curators can also find what they like and
recommend them several lists of songs. However, different
people have different preferences toward diversity, popu-
larity, and etc. Therefore, it will be great if we can refine
playlists based on different preferences of users on the fly.
Besides, as online music streaming services grow, there
are more and more demands for efficient and effective mu-
sic playlist recommendation. Automatic and personalized
music playlist generation thus becomes a critical issue.

However, it is unfeasible and expensive for editors to
daily or hourly generate suitable playlists for all users
based on their preferences about trends, novelty, diversity,
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etc. Therefore, most of previous works try to deal with
such problems by considering some particular assump-
tions. McFee et al. [14] consider playlist generation as a
language modeling problem and solve it by adopting statis-
tical techniques. Unfortunately, statistical method does not
perform well on small datasets. Pampalk et al. [16] gen-
erate playlists by exploiting explicit user behaviors such
as skipping. However, for implicit user preferences on
playlists, they do not provide a systematic way to handle
it.

As a result, for generating personalized playlists auto-
matically and flexibly, we develop a novel and scalable
music playlist generation system. The system consists of
three main steps. First, we adopt Chen et al.’s work [4]
to generate baseline playlists based on the preferences of
users about songs. In details, given the relationship be-
tween users and songs, we construct a corresponding bipar-
tite graph at first. With the users and songs graph, we can
calculate embedding features of songs and thus obtain the
baseline playlist for each songs by finding their k-nearest
neighbors. Second, by formulating baseline playlists as
sequences of words, we can pretrain RNN language model
(RNN-LM) to obtain better initial parameters for the fol-
lowing optimization, using policy gradient reinforcement
learning. We adopt RNN-LM because not only RNN-LM
has better ability of learning information progresses than
traditional statistical methods in many generation tasks,
but also neural networks can be combined with reinforce-
ment learning to achieve better performances [10]. Finally,
given preferences from user profiles and the pretrained pa-
rameters, we can generate personalized playlists by ex-
ploiting techniques of policy gradient reinforcement learn-
ing with corresponding reward functions. Combining these
training steps, the experimental results show that we can
generate personalized playlists to satisfy different prefer-
ences of users with ease.

Our contributions are summarized as follows:

• We design an automatic playlist generation frame-
work, which is able to provide timely recommended
playlists for online music streaming services.

• We remodel music playlist generation into a se-
quence prediction problem using RNN-LM which is
easily combined with policy gradient reinforcement
learning method.

• The proposed method can flexibly generate suitable
personalized playlists according to user profiles us-

168



ing corresponding optimization goals in policy gra-
dient.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce several related works about playlist
generation and recommendation. In Section 3, we provide
essential prior knowledge of our work related to policy gra-
dient. In Section 4, we introduce the details of our pro-
posed model, attention RNN-LM with concatenation (AC-
RNN-LM). In Section 5, we show the effectiveness of our
method and conclude our work in Section 6.

2. RELATED WORK

Given a list of songs, previous works try to rearrange them
for better song sequences [1,3,5,12]. First, they construct a
song graph by considering songs in playlist as vertices, and
relevance of audio features between songs as edges. Then
they find a Hamiltonian path with some properties, such as
smooth transitions of songs [3], to create new sequencing
of songs. User feedback is also an important considera-
tion when we want to generate playlists [6, 7, 13, 16]. By
considering several properties, such as tempo, loudness,
topics, and artists, of users’ favorite played songs recently,
authors of [6, 7] can thus provide personalized playlist
for users based on favorite properties of users. Pampalk
et al. [16] consider skip behaviors as negative signals and
the proposed approach can automatically choose the next
song according to audio features and avoid skipped songs
at the same time. Maillet et al. [13] provides a more in-
teractive way to users. Users can manipulate weights of
tags to express high-level music characteristics and obtain
corresponding playlists they want. To better integrate user
behavior into playlist generation, several works are pro-
posed to combine playlist generation algorithms with the
techniques of reinforcement learning [11, 20]. Xing et al.
first introduce exploration into traditional collaborative fil-
tering to learn preferences of users. Liebman et al. take
the formulation of Markov Decision Process into playlist
generation framework to design algorithms that learn rep-
resentations for preferences of users based on hand-crafted
features. By using these representations, they can generate
personalized playlist for users.

Beyond playlist generation, there are several works
adopting the concept of playlist generation to facilitate
recommendation systems. Given a set of songs, Vargas
et al. [18] propose several scoring functions, such as diver-
sity and novelty, and retrieve the top-K songs with higher
scores for each user as the resulting recommended list of
songs. Chen et al. [4] propose a query-based music rec-
ommendation system that allow users to select a preferred
song as a seed song to obtain related songs as a recom-
mended playlist.

3. POLICY GRADIENT REINFORCEMENT
LEARNING

Reinforcement learning has got a lot of attentions from
public since Silver et al. [17] proposed a general reinforce-
ment learning algorithm that could make an agent achieve

superhuman performance in many games. Besides, rein-
forcement learning has been successfully applied to many
other problems such as dialogue generation modeled as
Markov Decision Process (MDP).

A Markov Decision Process is usually denoted by a tu-
ple (S,A,P,R, γ), where

• S is a set of states
• A is a set of actions
• P(s, a, s′) = Pr[s′|s, a] is the transition probability

that action a in state s will lead to state s′

• R(s, a) = E[r|s, a] is the expected reward that an
agent will receive when the agent does action a in
state s.

• γ ∈ [0, 1] is the discount factor representing the im-
portance of future rewards

Policy gradient is a reinforcement learning algorithm to
solve MDP problems. Modeling an agent with parameters
θ, the goal of this algorithm is to find the best θ of a pol-
icy πθ(s, a) = Pr[a|s, θ] measured by average reward per
time-step

J(θ) =
∑
s∈S

dπθ (s)
∑
a∈A

πθ(s, a)R(s, a) (1)

where dπθ (s) is stationary distribution of Markov chain for
πθ.

Usually, we assume that πθ(s, a) is differentiable with
respect to its parameters θ, i.e., ∂πθ(s,a)∂θ exists, and solve
this optimization problem Eqn (1) by gradient ascent. For-
mally, given a small enough α, we update its parameters θ
by

θ ← θ + α∇θJ(θ) (2)

where
∇θJ(θ) =

∑
s∈S

dπθ (s)
∑
a∈A

πθ(s, a)∇θπθ(s, a)R(s, a)

= E[∇θπθ(s, a)R(s, a)]
(3)

4. THE PROPOSED MODEL

The proposed model consists of two main components. We
first introduce the structure of the proposed RNN-based
model in Section 4.1. Then in Section 4.2, we formulate
the problem as a Markov Decison Process and solve the
formulated problem by policy gradient to generate refined
playlists.

4.1 Attention RNN Language Model

Given a sequence of tokens {w1, w2, . . . , wt}, an RNN-
LM estimates the probability Pr[wt|w1:t−1] with a recur-
rent function

ht = f(ht−1, wt−1) (4)

and an output function, usually softmax,

Pr[wt = vi|w1:t−1] =
exp(W>viht + bvi)∑
k exp(W

>
vk
ht + bvk)

(5)
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Figure 1. The structure of our attention RNN language model with concatenation

where the implementation of the function f depends on
which kind of RNN cell we use, ht ∈ RD, W ∈ RD×V
with the column vector Wvi corresponding to a word vi,
and b ∈ RV with the scalar bvi corresponding to a word vi
(D is the number of units in RNN, and V is the number of
unique tokens in all sequences).

We then update the parameters of the RNN-LM by
maximizing the log-likelihood on a set of sequences with
size N , {s1, s2, . . . , sN}, and the corresponding tokens,
{wsi1 , w

si
2 , . . . , w

si
|si|}.

L =
1

N

N∑
n=1

|sn|∑
t=2

log Pr[wsnt |w
sn
1:t−1] (6)

4.1.1 Attention in RNN-LM

Attention mechanism in sequence-to-sequence model has
been proven to be effective in the fields of image caption
generation, machine translation, dialogue generation, and
etc. Several previous works also indicate that attention is
even more impressive on RNN-LM [15].

In attention RNN language model (A-RNN-LM), given
the hidden states from time t − Cws to t, denoted as
ht−Cws:t, whereCws is the attention window size, we want
to compute a context vector ct as a weighted sum of hid-
den states ht−Cws:t−1 and then encode the context vector
ct into the original hidden state ht.

βi = ν> tanh(W1ht +W2ht−Cws+i) (7)

αi =
exp(βi)∑Cws−1

k=0 exp(βk)
(8)

ct =

Cws−1∑
i=0

αiht−Cws+i (9)

h′t =W3

[
ht
ct

]
(10)

where β is Bahdanau’s scoring style [2], W1,W2 ∈
RD×D, and W3 ∈ RD×2D.

4.1.2 Our Attention RNN-LM with concatenation

In our work, {s1, s2, . . . , sN} and {wsi1 , w
si
2 , . . . , w

si
|si|}

are playlists and songs by adopting Chen et al.’s work [4].
More specifically, given a seed song wsi1 for a playlist si,
we find top-k approximate nearest neighbors of wsi1 to for-
mulate a list of songs {wsi1 , w

si
2 , . . . , w

si
|si|}.

The proposed attention RNN-LM with concatenation
(AC-RNN-LM) is shown in Figure 1. We pad w1:t−1 to
w1:T and concatenate the corresponding h′1:T as the input
of our RNN-LM’s output function in Eqn (5), where T is
the maximum number of songs we consider in one playlist.
Therefore, our output function becomes

Pr[wt = vi|w1:t−1] =
exp(W>vih

′ + bvi)∑
k exp(W

>
vk
h′ + bvk)

(11)

where W ∈ RDT×V , b ∈ RV and

h′ =


h′1
h′2
...
h′T

 ∈ RDT×1 (12)

4.2 Policy Gradient

We exploit policy gradient in order to optimize Eqn (1),
which is formulated as follows.

4.2.1 Action

An action a is a song id, which is a unique representation
of each song, that the model is about to generate. The set
of actions in our problem is finite since we would like to
recommend limited range of songs.

4.2.2 State

A state s is the songs we have already recommended in-
cluding the seed song, {wsi1 , w

si
2 , . . . , w

si
t−1}.
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4.2.3 Policy

A policy πθ(s, a) takes the form of our AC-RNN-LM and
is defined by its parameters θ.

4.2.4 Reward

RewardR(s, a) is a weighted sum of several reward func-
tions, i.e.,Ri : s× a 7→ R. In the following introductions,
we formulate 4 important metrics for playlists generation.
The policy of our pretrained AC-RNN-LM is denoted as
πθRNN (s, a) with parameters θRNN , and the policy of our
AC-RNN-LM optimized by policy gradient is denoted as
πθRL(s, a) with parameters θRL.

Diversity represents the variety in a recommended list of
songs. Several generated playlists in Chen et al.’s
work [4] are composed of songs with the same artist
or album. It is not regarded as a good playlist for
recommendation system because of low diversity.
Therefore, we formulate the measurement of the di-
versity by the euclidean distance between the em-
beddings of the last song in the existing playlist,
ws|s|, and the predicted song, a.

R1(s, a) = − log(|d(ws|s|, a)− Cdistance|) (13)

where d(·) is the euclidean distance between the em-
beddings of ws|s| and a, and Cdistance is a parameter
that represents the euclidean distance that we want
the model to learn.

Novelty is also important for a playlist generation sys-
tem. We would like to recommend something new
to users instead of recommend something familiar.
Unlike previous works, our model can easily gener-
ate playlists with novelty by applying a correspond-
ing reward function. As a result, we model reward of
novelty as a weighted sum of normalized playcounts
in periods of time [19].

R2(s, a) = − log(
∑
t

w(t)
log(pt(a))

log(maxa′∈A pt(a′))
)

(14)

where w(t) is the weight of a time period, t, with a
constraint

∑
t w(t) = 1, pt(a) is playcounts of the

song a, and A is the set of actions. Note that songs
with less playcounts have higher value of R2, and
vice versa.

Freshness is a subjective metric for personalized playlist
generation. For example, latest songs is usually
more interesting for young people, while older peo-
ple would prefer old-school songs. Here, we arbi-
trarily choose one direction for optimization to the
agent πθRL to show the feasibility of our approach.

R3(s, a) = − log(
Ya − 1900

2017− 1900
) (15)

where Ya is the release year of the song a.

Coherence is the major feature we should consider to
avoid situations that the generated playlists are
highly rewarded but lack of cohesive listening ex-
periences. We therefore consider the policy of our
pretrained language model, πθRNN (s, a), which is
well-trained on coherent playlists, as a good enough
generator of coherent playlists.

R4(s, a) = log(Pr[a|s, θRNN ]) (16)

Combining the above reward functions, our final reward
for the action a is

R(s, a) =γ1R1(s, a) + γ2R2(s, a)+

γ3R3(s, a) + γ4R4(s, a)
(17)

where the selection of γ1, γ2, γ3, and γ4 depends on dif-
ferent applications.

Note that although we only list four reward functions
here, the optimization goal R can be easily extended by a
linear combination of more reward functions.

5. EXPERIMENTS AND ANALYSIS

In the following experiments, we first introduce the details
of dataset and evaluation metrics in Section 5.1 and train-
ing details in Section 5.2. In Section 5.3, we compare pre-
trained RNN-LMs with different mechanism combination
by perplexity to show our proposed AC-RNN-LM is more
effectively and efficiently than others. In order to demon-
strate the effectiveness of our proposed method, AC-RNN-
LM combined with reinforcement learning, we adopt three
standard metrics, diversity, novelty, and freshness (cf. Sec-
tion 5.1) to validate our models in Section 5.4. More-
over, we demonstrate that it is effortless to flexibly ma-
nipulate the properties of resulting generated playlists in
Section 5.5. Finally, in Section 5.6, we discuss the details
about the design of reward functions with given preferred
properties.

5.1 Dataset and Evaluation Metrics

The playlist dataset is provided by KKBOX Inc., which is
a regional leading music streaming company. It consists of
10, 000 playlists, each of which is composed of 30 songs.
There are 45, 243 unique songs in total.

For validate our proposed approach, we use the metrics
as follows.

Perplexity is calculated based on the song probability dis-
tributions, which is shown as follows.

perplexity = e
1
N

∑N
n=1

∑
x−q(x) log p(x)

where N is the number of training samples, x is a
song in our song pool, p is the predicted song prob-
ability distribution, and q is the song probability dis-
tribution in ground truth.

Diversity is computed as different unigrams of artists
scaled by he total length of each playlist, which is
measured by Distinct-1 [9]
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Figure 2. Log-perplexity of different pretrained models on
the dataset under different training steps

Novelty is designed for recommending something new to
users [19]. The more the novelty is, the lower the
metric is.

Freshness is directly measured by the average release
year of songs in each playlist.

5.2 Training Details

In the pretraining and reinforcement learning stage, we
use 4 layers and 64 units per layer in all RNN-LM with
LSTM units, and we choose T = 30 for all RNN-LM
with padding and concatenation. The optimizer we use is
Adam [8]. The learning rates for pretraining stage and re-
inforcement learning stage are empirically set as 0.001 and
0.0001, respectively.

5.3 Pretrained Model Comparison

In this section, we compare the training error of RNN-LM
combining with different mechanisms. The RNN-LM with
attention is denoted as A-RNN-LM, the RNN-LM with
concatenation is denoted as C-RNN-LM, and the RNN-
LM with attention and concatenation is denoted as AC-
RNN-LM. Figure 2 reports the training error of different
RNN-LMs as log-perplexity which is equal to negative log-
likelihood under the training step from 1 to 500, 000. Here
one training step means that we update our parameters by
one batch. As shown in Figure 2, the training error of
our proposed model, AC-RNN-LM, can not only decrease
faster than the other models but also reach the lowest value
at the end of training. Therefore, we adopt AC-RNN-LM
as our pretrained model.

Worth noting that the pretrained model is developed for
two purposes. One is to provide a good basis for fur-
ther optimization, and the other is to estimate transition

Table 1. Weights of reward functions for each model

Model γ1 γ2 γ3 γ4

RL-DIST 0.5 0.0 0.0 0.5
RL-NOVELTY 0.0 0.5 0.0 0.5

RL-YEAR 0.0 0.0 0.5 0.5
RL-COMBINE 0.2 0.2 0.2 0.4

Table 2. Comparison on different metrics for playlist gen-
eration system (The bold text represents the best, and the
underline text represents the second)

Model Diversity Novelty Freshness

Embedding [4] 0.32 0.19 2007.97
AC-RNN-LM 0.39 0.20 2008.41

RL-DIST 0.44 0.20 2008.37
RL-NOVELTY 0.42 0.05 2012.89

RL-YEAR 0.40 0.19 2006.23
RL-COMBINE 0.49 0.18 2007.64

probabilities of songs in the reward function. Therefore,
we simply select the model with the lowest training er-
ror to be optimized by policy gradient and an estimator of
Pr[a|s, θRNN ] (cf. Eqn (16)).

5.4 Playlist Generation Results

As shown in Table 2, to evaluate our method, we compare
6 models on 3 important features, diversity, novelty, and
freshness (cf. Section 5.1), of playlist generation system.
The details of models are described as follows. Embed-
ding represents the model of Chen et al.’s work [4]. Chen
et al. construct the song embedding by relationships be-
tween user and song and then finds approximate k nearest
neighbors for each song. RL-DIST, RL-NOVELTY, RL-
YEAR, and RL-COMBINE are models that are pretrained
and optimized by the policy gradient method (cf. Eqn (17))
with different weights, respectively, as shown in Table 1.

The experimental results show that for single objec-
tive such as diversity, our models can accurately gener-
ate playlists with corresponding property. For example,
RL-Year can generate a playlist which consists of songs
with earliest release years than Embedding and AC-RNN-
LM. Besides, even when we impose our model with mul-
tiple reward functions, we can still obtain a better resulting
playlist in comparison with Embedding and AC-RNN-LM.
Sample result is shown in Figure 3.

From Table 2, we demonstrate that by using appropriate
reward functions, our approach can generate playlists to fit
the corresponding needs easily. We can systematically find
more songs from different artists (RL-DIST), more songs
heard by fewer people (RL-NOVELTY), or more old songs
for some particular groups of users (RL-YEAR).

5.5 Flexible Manipulating Playlist Properties

After showing that our approach can easily fit several
needs, we further investigate the influence of γ to the re-
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Figure 3. Sample playlists generated by our approach. The
left one is generated by Embedding [4] and the right one is
generated by RL-COMBINE.

sulting playlists. In this section, several models are trained
with the weight γ2 from 0.0 to 1.0 to show the vari-
ances in novelty of the resulting playlists. Here we keep
γ2 + γ4 = 1.0 and γ1 = γ3 = 0 and fix the training steps
to 10, 000.

As shown in Figure 4, novelty score generally decreases
when γ2 increases from 0.0 to 1.0 but it is also possible
that the model may sometimes find the optimal policy ear-
lier than expectation such as the one with γ2 = 0.625.
Nevertheless, in general, our approach can not only let the
model generate more novel songs but also make the extent
of novelty be controllable. Besides automation, this kind
of flexibility is also important in applications.

Take online music streaming service as an example,
when the service provider wants to recommend playlists
to a user who usually listens to non-mainstream but fa-
miliar songs (i.e., novelty score is 0.4), it is more suitable
to generate playlists which consists of songs with novelty
scores equals to 0.4 instead of generating playlists which is
composed of 60% songs with novelty scores equals to 0.0
and 40% songs with novelty scores equals to 1.0. Since
users usually have different kinds of preferences on each
property, to automatically generate playlists fitting needs
of each user, such as novelty, becomes indispensable. The
experimental results verify that our proposed approach can
satisfy the above application.

5.6 Limitation on Reward Function Design

When we try to define a reward function Ri for a prop-
erty, we should carefully avoid the bias from the state s.
In other words, reward functions should be specific to the
corresponding feature we want. One common issue is that

Figure 4. Novelty score of playlists generated by different
imposing weights

the reward function may be influenced by the number of
songs in state s. For example, in our experiments, we adopt
Distinct-1 as the metric for diversity. However, we cannot
also adopt Distinct-1 as our reward function directly be-
cause it is scaled by the length of playlists which results
in all actions from states with fewer songs will be bene-
fited. Therefore, difference between cR1 and Distinct-1 is
the reason that RL-DIST does not achieve the best perfor-
mance in Distinct-1 (cf. Table 1). In summary, we should
be careful to design reward functions, and sometimes we
may need to formulate another approximation objective
function to avoid biases.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we develop a playlist generation system
which is able to generate personalized playlists automat-
ically and flexibly. We first formulate playlist generation
as a language modeling problem. Then by exploiting the
techniques of RNN-LM and reinforcement learning, the
proposed approach can flexibly generate suitable playlists
for different preferences of users.

In our future work, we will further investigate the pos-
sibility to automatically generate playlists by considering
qualitative feedback. For online music streaming service
providers, professional music curators will give qualitative
feedback on generated playlists so that research develop-
ers can improve the quality of playlist generation system.
Qualitative feedback such as ‘songs from diverse artists
but similar genres’ is easier to be quantitative. We can de-
sign suitable reward functions and generate corresponding
playlists by our approach. However, other feedback such
as ‘falling in love playlist’ is more difficult to be quantita-
tive. Therefore, we will further adopt audio features and
explicit tags of songs in order to provide a better playlist
generation system.
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