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ABSTRACT

Estimating the key velocity of each note from poly-
phonic piano music is a highly challenging task. Previous
work addressed the problem by estimating note intensity
using a polyphonic note model. However, they are limited
because the note intensity is vulnerable to various factors
in a recording environment. In this paper, we propose a
novel method to estimate the key velocity focusing on tim-
bre change which is another cue associated with the key
velocity. To this end, we separate individual notes of poly-
phonic piano music using non-negative matrix factoriza-
tion (NMF) and feed them into a neural network that is
trained to discriminate the timbre change according to the
key velocity. Combining the note intensity from the sepa-
rated notes with the statistics of the neural network predic-
tion, the proposed method estimates the key velocity in the
dimension of MIDI note velocity. The evaluation on Saar-
land Music Data and the MAPS dataset shows promising
results in terms of robustness to changes in the recording
environment.

1. INTRODUCTION

Polyphonic piano transcription is one of the most active
research topics in automatic music transcription [1]. How-
ever, the absolute majority of piano transcription algo-
rithms so far have been concerned with detecting the pres-
ence of notes in term of pitch (or note number), onset
and duration, while ignoring note dynamics, which is ex-
pressed by key velocity on piano.

Along with tempo, dynamics is a key feature that pro-
duces a musical “motion” [19]. Previous studies on piano
performance analysis employed dynamics as one of two
main features of performance characteristics in [22, 25].
Another study showed that, if dynamics is estimated for
individual notes, a finer analysis is achievable [21].

There have been a few works that challenged the task of
estimating individual note dynamics. To best of our knowl-
edge, the first attempt was made by Ewert and Müller
who tackled the problem using a parametric model of
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polyphonic piano notes [7]. Our previous work estimated
the note intensity using score-informed non-negative ma-
trix factorization (NMF) in various training strategies [15].
Szeto and Wong used a sinusoidal model to separate chords
tones into individual piano tones and estimated the note in-
tensity as part of the source separation task [23].

All of them basically estimate individual note dynamics
according to energy magnitude or loudness of the notes.
However, this approach has an essential limitation in that
a note produced by a certain key velocity can be recorded
in different sound levels depending on the recording con-
ditions. For example, a pianissimo note can be recorded
loudly or a forte note can be quietly, depending on the in-
put gain of the recording device or the distance from the
microphone.

In this paper, we challenged to overcome this limita-
tion by focusing on differences in timbral characteristics
caused by the key velocity. According to previous research,
loudness and tone of a piano note are uniquely determined
by the velocity of the hammer at the time it strikes the
strings [12]. This implies that the key velocity can be in-
ferred not only from the loudness but also from the tim-
bre of the note, assuming that the hammer velocity can be
approximated by the key velocity. This idea was explored
in [14] where a piano note shows different timbral char-
acteristics such as a spectral envelope or inharmonicity,
depending on the key velocity. While the previous work
focused on single notes, we study it for polyphonic music.

The proposed system consists of three parts: an NMF
module for note separation and intensity estimation, a neu-
ral network to discriminate key velocity, and intensity-to-
velocity calibration using the results from the two mod-
ules. The NMF module is based on score-informed settings
from [15] and [24]. After the decomposition of the audio
spectrogram, we reproduce the note-separated spectrogram
from the NMF module. The neural network takes the note-
separated spectrogram as input and estimates its key ve-
locity. The third part obtains proper mapping parameters
between note intensity and key velocity using the distribu-
tion of velocity estimation from the neural network, and
finally estimate individual key velocity in the dimension
of MIDI note velocity. We evaluate the proposed method
on Saarland Music Data and the MAPS dataset and show
promising results in terms of robustness to changes in the
recording environment.

The rest of paper is structured as follows. In Section 2
we introduce the scope of our work and define the terms
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that represent dynamics of a piano note. Section 3 summa-
rizes the related works. In Section 4 we explain the NMF
and neural network framework. The experiment and result
are explained in Section 5 and 6. Finally, the conclusion is
presented in Section 7.

2. BACKGROUND

To provide better understanding of the task and scope in
this research, we first review key terms and define the prob-
lem that we attempt to solve.

2.1 Term Definitions

Note intensity is the term that represents the magnitude of
acoustical energy of a note. It can be defined as sound-
pressure level (SPL) [10] or the sum of spectral energy as
in [7, 15]. Since the intensity is an acoustical feature, it is
highly variable by the recording condition. For example,
note intensity can be changed by simple post-processing
such as gain adjustment. Therefore, the intensity of each
note is comparable only when the recording conditions are
consistent.

Key velocity refers to the kinetic velocity of the piano
key and it is closely connected to the hammer velocity. It
can be measured by detecting the elapsed time when the
hammer shank passes two fixed points [10]. Unlike the
note intensity, the key velocity is a feature measured di-
rectly from the mechanical movement, hence independent
from the acoustic recording environment. If the recording
condition is constant and the sympathetic resonance is ig-
nored, the mapping between key velocity and note inten-
sity for each pitch is linear [10].

MIDI velocity is the term that represents the key ve-
locity in the MIDI format. It is a one-byte integer value be-
tween 0 and 127 inclusive in the note messages. Computer-
controlled pianos or MIDI-compatible keyboards have
their own mapping of key velocity to MIDI velocity.

2.2 Problem Definition

The aim of this study lies in estimating note key velocity
in terms of MIDI velocity. Although our previous work at-
tempted to produce the result in MIDI velocity, the method
requires an additional data for intensity-to-velocity calibra-
tion with the same piano and recording condition [15]. In
a real-world situation, however, it is almost impossible to
obtain such mapping for a target recording. Instead of em-
ploying a target-suited training set, our work aims to learn
a proper intensity-to-velocity mapping directly from a tar-
get audio recording.

One of the obstacles in the task is that most datasets
represent the key velocity with MIDI velocity and the map-
ping between the two varies depending on the piano or key-
board model. To focus on the relation between timbre and
key velocity in this study, we fix the key-to-MIDI velocity
mapping by employing only one piano model but differ-
ent recording conditions during the evaluation. However,
we evaluate the trained model on recordings with a dif-

ferent piano to see how it generalizes. The details will be
explained in the evaluation section.

3. RELATED WORKS

Our proposed method is based on the NMF framework
from [15] but expand it by employing a recent work by
Wang et al [24]. One of the main limitations in the NMF
framework is that it is difficult to model the timbre changes
over time. For example, the NMF model used in [8] and
[15] assumes the spectral template of each pitch does not
change over time. To overcome this limitation, Wang et
al suggested using multiple spectral templates per pitch in
NMF for piano modeling. This NMF model was adopted in
our proposed system and will be discussed in more detail
in the next section.

Identifying key velocity by its timbre can be compared
to identification of musical instruments. The earlier works
used various hand-crafted audio features [6, 14]. Recently,
deep neural network has become a popular solution for this
task [2, 11], which takes spectrograms or mel-frequency
cepstral coefficients as input. There are a few work inter-
ested in timbral difference by the velocity [4, 14] but they
did not aim to distinguish these difference explicitly.

Our task can also be compared to instrument identifi-
cation in polyphonic audio. One of typical solutions for
this task is using source separation and then handling it
as monophonic audio sources. Heittola et al. suggested
a framework with NMF-based source separation module
[13]. Similar to this work, our method also employs NMF-
based source separation. But we use the neural networks
instead of the Gaussian mixture model to identify the sep-
arated sources.

4. METHOD

Our proposed system consists of three parts as shown in the
Figure 1. The first part is score-informed NMF that factor-
izes the spectrogram of audio recording into note-separated
spectrogram for every note in the score. This also returns
the intensity of each note. The second part is neural net-
work (NN) that takes the note-separated spectrogram and
estimates the key velocity. The third part is intensity-to-
velocity calibration which is conducted by comparing the
estimated velocity from the NN module and the intensity
from the NMF module on their distributions.

4.1 Note Separation

The first part of our framework is based on NMF, a matrix
factorization for non-negative data which is usually spec-
trogram in audio processing domain.

Let us denote a given spectrogram as V ∈ RF×T
≥0 , where

F is the number of frequency bins and T is the number of
time frames. With NMF, the spectrogram can be factorized
into multiplication of two matrices W ∈ RF×(P ·R)

≥0 and

H ∈ R(P ·R)×T
≥0 where P denotes the number of pitch in

semitone and R denotes the number of spectral basis per
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Figure 1. A diagram of the proposed system.

pitch. By doing so we can decompose the input spectro-
gram with spectral templates bases W and the activation of
the bases over time H.

To clarify the relationship between spectral basis and
pitch, we will follow the similar notation presented in
[24], denoting Wf,p,r := Wf,(p−1)·R+r and Hp,r,t :=
H(p−1)·R+r,t as below:

Vft =
∑
p,r

Wf,p,rHp,r,t (1)

where f ∈ [1, F ], t ∈ [1, T ], p ∈ [1, P ], and r ∈ [1, R]
are index of frequency bin, time frame, pitch, and spectral
basis in a pitch, respectively.

4.1.1 NMF Modeling

We employ an NMF model that learns multiple time-
frequency patterns instead of single spectral templates
[24], which was applied to the score-informed AMT task.
This model captures various timbre of the same pitch and
temporal evolution of timbre, which is a necessary part of
our task. Since the main contribution of our paper lies on
the velocity estimation by combining of the NMF and NN
results, the following section will mainly explain several
differences in the implementation. The details are found
in [24].

Considering that an NMF model can be configured
mainly by the number of basis, initialization method, and
additional constraints with corresponding update rules,
Wang et al.’s model for piano recording [24] is different
from the previous models used in [8,9,15] in three aspects.

First, they suggested multi-basis per pitch so that each
pitch has R number of corresponding bases. The previous
models represent a piano note by the combination of per-
cussive (onset) and harmonic (sustain) basis for the whole
note duration. Since there is only one harmonic basis for
each pitch, the spectral shape of the note does not change
over time. This assumes that the most important timbre fea-
ture is constant in the sustain part within the single note
as well as for different key velocities. But the multi-basis
model can handle this subtle change of timbre by using
multiple bases with different activation ratios.

Second, employing the multi-basis model requires a dif-
ferent initialization method for matrix W and H. To model

temporal progression of piano timbre, the r-th basis was
initialized to be active after the (r − 1)-th basis of the
same pitch. Since the pitch bases are activated sequentially,
they can model temporal evolution of the note tone. As the
pitch bases are differed by their activation initialization,
they also have different spectral characteristics. Among R
bases of a pitch, the first basis handles percussive element
and the the second to the last represent harmonic elements
in the temporal order. In addition, the harmonic area is set
to be tapered as the rank index r increases. This makes the
earlier bases include more inharmonicity.

Third, Wang et al.’s model suggested several additional
costs for the multi-basis model. They include a soft con-
straint, temporal continuity, and energy decay in the tem-
plate matrix. Among the suggested costs, we did not em-
ploy the decaying cost for W, which encourages smooth
decrease of energy in spectral templates in W. We found
that our system works better with L1 normalized W so that
the magnitude feature is assigned only to H. We followed
the NMF costs and update function strictly except that we
ignore the decaying cost term by assign 0 to β3.

For better intensity estimation, we previously suggested
using power spectrogram, instead of linear magnitude
spectrogram [15]. We also showed that using synthesized
monophonic scale tones helps to learn spectral template.
Based on this observation, our system also uses power
spectrogram and synthesized piano scale. Another differ-
ence with [24] is post-updating of H. After the update con-
verges, we set all constraints on H to zeros and update H
for ten times with fixed W so that our final reproduction
can resemble the original gain.

The NMF module reproduces note-separated spectro-

gram V̂
(n)

for each note n in the score by multiplying
the spectral bases of note’s pitch and its activation over
note’s duration. The note intensity is defined as the max-

imum activation of V̂
(n)

, which can be represented as

max(
∑

f V̂
(n)

ft ). Then, we reproduce V̂
(n)

again around the
time frame of the maximum activation and store it for the
input for the neural network. This helps to fix the size of
NN’s input and maintain the relative position of each ele-
ment in the cropped spectrogram.
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Figure 2. Comparison of the intensity-normalized note-
separated spectrogram with different MIDI velocities.
The spectrogram was reproduced from polyphonic piano
recording (SMD). The MIDI note number is 50 and the
MIDI velocities were 14 and 95, respectively.

4.2 Velocity Estimation

The neural network (NN) model takes the note-separated
spectrograms from the NMF module as input and estimates
the velocity of each note. The note-separated spectrogram
is converted to a log-frequency spectrogram before it is
used for the input of the NN module. The frequency res-
olution is set to 25 cent and the frequency range is from
27.5 Hz (the lowest pitch of piano) to 16.7 kHz (two oc-
tave higher than the highest pitch of piano), resulting in
445 frequency bins. After some preliminary test, we used
14 frames as input size. The spectrogram magnitude is nor-
malized by the maximum value so that every entry in the
spectrogram lies between 0 and 1 the as shown in the Fig-
ure 2.

The neural network consists of 5 fully-connected hid-
den layers and each layer has 256 nodes. Every hidden
layer uses SELUs as an activation function [17]. Applying
SELUs aims to stabilize the network from internal covari-
ance shifting without any additional complexity.

The loss function is set to mean square error of key
velocity estimation, approaching the task as a regression
problem. We also attempted to use softmax as a classifi-
cation problem but the result was slightly worse. We used
Adam optimization [16] with initial learning rate of 1e-4,
and early stopping on the validation set.

4.3 Intensity-to-Velocity Calibration

The NN module provides an absolute degree of note dy-
namics but the relative magnitude between each note from
the NMF results is more stable than that from the NN re-
sults. Therefore, we combine the two results to find better
estimation.

As described in Section 1, intensity is affected by both
key velocity and recording condition. One cannot distin-
guish whether the high intensity from the NMF is caused
by strong strike of hammer or high gain in the recording
device. Therefore each recording condition needs its own
mapping parameter.

Also, the intensity-velocity relation depends on a piano
or a keyboard model [3]. Our previous study showed that
the MIDI velocity of a note can be approximated by a lin-
ear relationship with the log value of the intensity Int(n),
so that Vel(n) = a·log(Int(n))+b for the Disklavier, which
we use for the evaluation [15]. However, we need to know
intensity-paired velocity in the target recording condition,
which is not available in real-word recordings.

Our solution is estimating it from the overall velocity
distribution of each piece from the NN module. If we as-
sume the outcome velocity has a distribution with mean
µV and standard deviation σV for each piece, we can ob-
tain the mapping parameters by comparing it with the dis-
tribution of log of intensity, µlog(I) and σlog(I). Then, the
mapping parameter a and b correspond to σV /σlog(I) and
µV −(σV /σlog(I))µlog(I), respectively, with the assumption
that every note has the same mapping parameters. Note
that this neglects the note-specific difference of intensity-
to-velocity mapping parameter. The error caused by this
assumption will be also explained in Section 6.

Our system takes the result of the NN module to es-
timate µV and σV for each piece. The estimation can be
also done by a simple global setting. During the evalua-
tion, we used this scheme as a baseline to compare with
our NN model.

5. EXPERIMENT

5.1 Experiment I: SMD

We used Saarland Music Dataset (SMD) MIDI-Audio Pi-
ano Music [18] for the evaluation. The dataset consists of
fifty pairs of audio and MIDI recordings of performance
on Yamaha Disklavier DCFIIISM4PRO. The MIDI files of
SMD contain every movement of piano key and pedal in
high reliability, thus providing the ground truth of note dy-
namics in MIDI velocity.

The previous work pointed out that the recording condi-
tion of each piece in SMD is differed by its recording date
[15]. Therefore, the intensity-to-velocity mapping had to
be obtained separately for each subset of pieces that share
the same recording condition. The difference in intensity-
to-velocity mapping in SMD is represented in Figure 3.
Since the goal of the proposed system is to estimate key
velocity robustly against changes in the recording environ-
ment, such different recording conditions are ideal for eval-
uating this task.

We evaluate whether the proposed system can handle
different recording conditions and estimate correct velocity
distributions. We used fifteen pieces recorded in the year of
2011 as a test set, and other thirty-five pieces as a training
set, which was recorded during the year of 2008 and 2010.

To evaluate the exact performance and usefulness of the
NN module, we also present two upper boundary models
and a baseline model. The first upper boundary assumes
that the system obtained proper mapping parameters for
every individual pitch from other pieces in the same test
set, as in [15]. The second upper boundary assumes that
our NN module guessed correct estimation of velocity dis-

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 123



Figure 3. The difference in velocity-intensity mapping be-
tween two subsets from SMD. Each point represents a sin-
gle note with MIDI note number 50. The notes recorded in
2009 show higher intensity compared to the notes recorded
in 2011 given the same velocity.

tribution. In this upper boundary, we employed the ground
truth of velocity distribution for each piece. The baseline
is using global mean and standard deviation values. Based
on the statistics of training set, we used µV = 57.87 and
σV = 16.25.

The evaluation measure is an absolute error of velocity
between ground truth and estimated value. In MIDI veloc-
ity dimension, absolute error is a more meaningful crite-
rion than relative error because MIDI velocity is already
a logarithm of the intensity. We used the average of ab-
solute velocity error in a piece, which can be represented
as Err =

∑N
n |VGT(n)− VEst(n)| /N , where VGT(n) and

VEst(n) are ground truth velocity and estimated velocity of
the n-th note in a piece, respectively.

5.2 Experiment II: MAPS

We also evaluate our NN module on unseen data to see
whether the NN can learn generalized piano timbre from
the training set. To this end, we designed another exper-
iment with the MAPS database [5], which was recorded
with a different piano and recording conditions.

From the MAPS dataset, we used two subsets per-
formed by Yamaha Disklavier Mark III (upright) that con-
sists of 30 recordings. One subset is recorded as “ambient”
and the other is recorded as “close” condition. We did not
use other MAPS dataset for training our NN module. The
model trained from thirty-five pieces of SMD was used for
this test.

In this experiment, the evaluation is made only with the
estimated distribution from the NN module µnn and σnn
and ground truth µgt and σgt. Since the mapping between
key velocity and MIDI velocity in SMD and the MAPS
dataset is different, we cannot compare these values di-
rectly. Also, we cannot figure out how the same key veloc-
ity will be recorded as MIDI velocity in SMD and MAPS
or which velocity value will make most close reproduction
of a note in MAPS with the instrument in SMD. What we
can assure is that MIDI velocity ranking of notes or piece
will be preserved both in SMD and MAPS. Therefore we

examine the Spearman correlation between the NN’s guess
µnn and σnn and the ground truth MAPS MIDI value µgt

and σgt.

5.3 Procedure

The experiment procedure is as follows. First, the NMF
module calculates note intensity and reproduces note-
separated spectrograms for each pieces in the training set
and test set. Then, we train the NN module with the note
spectrograms of the training set from SMD. After the train-
ing, the trained NN estimates the velocity of note spectro-
grams of the test set. Combining the distribution of esti-
mated velocity from the NN and estimated intensity from
the NMF as described in section 4.3, we can obtain final
MIDI velocity for each note in the piece. For the Experi-
ment II, the calibration part is omitted. During the exper-
iment, we used STFT with window size 8192, hop size
2048, and 8 spectral bases per pitch in the NMF module.

6. RESULTS

6.1 Experiment I: SMD

We present our result on the SMD set recorded in 2011
on Table 1. The ground truth velocity distribution of each
piece is represented as GT, and the estimated distribution
from the NN module is as NN. The remaining columns on
the right are the average errors of four different mapping
parameter for the same NMF result. UB1 is the first upper
boundary that uses other test pieces to obtain the velocity-
to-intensity mapping as in [15]. UB2 is the second upper
boundary that assumes our NN module estimated the cor-
rect µV and σV . The proposed method (Prop.) is from the
NN estimation for µV and σV . The baseline (Base) always
guessed µV = 57.87 and σV = 16.25. The last column
shows the error when we directly used the NN estimation
in note level, instead of combining it with the NMF inten-
sity.

The estimation of the NN module showed high error in
a note level as shown in the NN column. We presume the
reason for the error is mainly based on the imperfection of
source-separation. Also, the different recording condition
in the test set could make not only intensity difference but
also timbral change. This inhomogeneity may also have
had a negative impact on the performance of the NN mod-
ule.

Even though the note-level accuracy was not reliable,
we found that the overall distribution of the estimated ve-
locity resembles the distribution of ground truth velocity
as we expected. By employing the estimated velocity dis-
tribution, the note intensity from the NMF module could
be successfully mapped into MIDI velocity as shown in the
Prop. column. The proposed system outperforms the base-
line estimation in most pieces. While the fixed guess ig-
nored characteristic of each piece, the NN module success-
fully estimated a correct distribution from the note spectro-
grams.

The difference between two upper boundary UB1 and
UB2 shows the error caused by the assumption that the
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Composers Piece
Ground Truth NN Estimation UB1 UB2 Proposed Baseline NN note
Mean STD Mean STD Err Err Err Err Err

Bach BWV 888-1 49.7 12.6 53.3 15.5 3.1 3.9 3.3 6.6 10.4
Bach BWV 888-2 63.3 11.3 62.8 13.3 2.1 3.1 3.5 9.0 10.1
Bartok op. 80-1 68.9 18.2 65.7 15.3 5.9 6.6 8.5 15.0 12.2
Bartok op. 80-2 59.5 23.5 59.5 20.4 5.1 7.2 8.6 10.3 11.3
Bartok op. 80-3 67.4 19.0 64.8 17.3 6.0 7.1 8.9 14.8 13.0
Brahms op. 5-1 64.8 23.5 62.0 19.6 7.2 8.4 10.0 13.1 13.8
Haydn HobXVI-52-01 57.9 14.6 58.4 14.7 3.9 5.5 4.6 6.1 11.9
Haydn HobXVI-52-2 49.8 18.6 53.9 16.6 3.8 4.7 5.6 8.0 11.1
Haydn HobXVI-52-3 60.4 12.9 59.1 15.5 3.6 5.4 5.5 7.6 12.9
Mozart K. 265 57.5 13.2 57.1 14.4 3.2 6.2 6.2 6.7 10.5
Mozart K. 398 58.6 13.2 57.7 16.5 3.6 5.6 8.5 8.6 11.2
Rachmaninoff op. 36-1 56.5 18.7 54.5 16.9 6.4 6.1 6.9 5.9 11.7
Rachmaninoff op. 36-2 54.7 19.5 50.2 18.1 5.2 5.5 6.4 6.9 11.5
Rachmaninoff op. 36-3 66.3 19.8 66.4 16.0 6.6 9.0 8.5 14.7 12.7
Ravel Jeux d’eau 55.3 17.0 57.8 17.6 5.8 5.5 5.0 5.1 12.5

Average 4.83 5.9 6.7 9.2 11.8

Table 1. The result of experiment on SMD. The first two columns show mean and standard deviation of note velocities
from the ground truth and the estimation by neural network. “Err” stands for absolute mean error of note velocities. UB1 is
an oracle model that learns key-dependent velocity mapping from other test pieces, and UB2 is another oracle model with
ground-truth velocity mean and variance. The baseline model uses a global mean and variance. NN note represents mean
error of velocity estimation of individual notes in the neural network

intensity-to-velocity mapping is consistent over the key.
However, previous works showed that a piano stroke
makes different intensity with the same velocity depend-
ing on the key [20]. This suggests the need of additional
methods to compensate the key-dependent mapping in the
future research.

The error is notable in Rachmaninoff’s Op. 36-1. A pos-
sible reason is that the global setting of velocity distribu-
tion in the baseline is closer to the ground truth compared
to the NN estimation. The errors in Ravel’s Jeux d’eau
is worth mentioning since the two upper boundary meth-
ods made the worse result. We presume that the reason is
the frequent use of soft pedal during the performance. Soft
pedal makes intensity lower, thus making our system esti-
mate it softer than what is expected from its MIDI velocity.

6.2 Experiment II: MAPS

Figure 4 shows the correlation between the estimation from
the NN module and the ground truth on the MAPS record-
ings. The absolute value of µnn and µgt has an error be-
cause of different key velocity to MIDI velocity mapping,
thus cannot be compared directly. However, we can see that
as the ground truth velocity mean of the piece increases,
the estimated mean of NN also tends to catch it up. The
same tendency is also found in the standard deviation. The
Spearman correlation between µGT and µNN is 0.838, and
that between σGT and σNN is 0.597.

Figure 4 also shows that the estimation from the NN
module is not affected much by whether the recording is
ambient or close, indicating that our NN module is robust
to different piano and recording conditions. We did not ap-
ply the baseline method to MAPS because the estimation
would be always constant regardless of the piece.

7. CONCLUSIONS

We presented a system that estimates key velocity from
polyphonic piano recordings. The main limitation of pre-

Figure 4. The test result on the MAPS dataset (Experiment
II). Each point represents a single piece.

vious work was the lack of method for calibration be-
tween intensity and key velocity. To overcome the limi-
tation, We proposed a neural network module that takes
note-separated spectrogram and estimates the key velocity
of each note. Though the accuracy of individual notes is
not reliable, the overall distribution resembles the distribu-
tion of ground truth velocity for each piece. Our system
obtains a proper intensity-to-velocity mapping by employ-
ing the estimated velocity distribution, and then estimate
the key velocity.

We evaluated our system on two different datasets.
Overall, the evaluation showed a promising result of this
timbre-based approach. The velocity estimation from the
NN module showed a similar distribution with the ground
truth velocity distribution despite the different recording
conditions. Employing this estimated distribution, our sys-
tem mapped note intensity to MIDI velocity reliably. Also,
the result showed that our NN module learns robust fea-
tures that can be applied to unseen data.

For the future work, we plan to apply our solution to
real-world recordings with various timbre and recording
conditions and, by combining other AMT and audio-to-
score alignment algorithms, and obtain more full-fledged
performance transcription.
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