
GENERALIZED SKIPGRAMS FOR PATTERN DISCOVERY IN
POLYPHONIC STREAMS

Christoph Finkensiep Markus Neuwirth Martin Rohrmeier
École Polytechnique Fédérale de Lausanne

{christoph.finkensiep,markus.neuwirth,martin.rohrmeier}@epfl.ch

ABSTRACT

The discovery of patterns using a minimal set of assump-
tions constitutes a central challenge in the modeling of
polyphonic music and complex streams in general. Skip-
grams have been found to be a powerful model for captur-
ing semi-local dependencies in sequences of entities when
dependencies may not be directly adjacent (see, for in-
stance, the problems of modeling sequences of words or
letters in computational linguistics). Since common skip-
grams define locality based on indices, they can only be
applied to a single stream of non-overlapping entities. This
paper proposes a generalized skipgram model that allows
arbitrary cost functions (defining locality), efficient filter-
ing, recursive application (skipgrams over skipgrams), and
memory efficient streaming. Further, a sampling mecha-
nism is proposed that flexibly controls runtime and out-
put size. These generalizations and optimizations make
it possible to employ skipgrams for the discovery of re-
peated patterns of close, nonsimultaneous events or notes.
The extensions to the skipgram model provided here do not
only apply to musical notes but to any list of entities that is
monotonic with respect to a given cost function.

1. INTRODUCTION

Discovering relevant patterns in a given corpus of musical
pieces is a central problem for music modeling and music
information retrieval (MIR) and is crucial for a range of
applications from search to stylistic modeling. While there
exist many approaches for modeling monophonic melodies
[8, 7], polyphony constitutes a persistent challenge due
to the vast amount of latent structural patterns that occur
on multiple levels. These patterns involve surface orna-
ments and accompaniment figurations, contrapuntal con-
figurations, latent polyphony comprising multiple inter-
leaved voices, and harmonic and voice-leading schemata.

While many of the underlying patterns are themselves
relatively simple, identifying these patterns is challenging,
because it involves distinguishing the relevant notes while

c© Christoph Finkensiep, Markus Neuwirth, Martin
Rohrmeier. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Christoph Finkensiep,
Markus Neuwirth, Martin Rohrmeier. “Generalized Skipgrams for
Pattern Discovery in Polyphonic Streams”, 19th International Society for
Music Information Retrieval Conference, Paris, France, 2018.

ignoring others. In addition, many patterns do not spec-
ify notes exactly but leave some flexibility when being in-
stantiated, especially concerning timing. Finally, multiple
patterns may co-occur simultaneously or in an interleaved
manner.

When modeling the latent structure of polyphony, it is
important to find the characteristic properties of the struc-
ture to be modeled. Therefore, it is advantageous to start
from a model with minimal assumptions about the target
structure and add assumptions to the basic model until the
desired patterns are found. This way, the properties of
the modeled structure are always clear and well-separated
from the assumptions inherent in the underlying represen-
tation.

There are a variety of methods for modeling sequential
data with minimal assumptions, such as those developed in
computer linguistics, that treat the data as a single stream
of events. However, these cannot be straightforwardly ap-
plied to polyphonic data without adding further implicit as-
sumptions or removing information contained in the orig-
inal data. Therefore, a generalization of skipgrams [4] is
developed in this paper that is applicable to a stream of
polyphonic notes that need not be explicitly presented as
separate voices. This model is applied to a musical corpus
for the discovery of polyphonic patterns.

In the remainder of this paper, we first discuss related
work in more detail (Section 2); we then describe our ap-
proach for generalized skipgrams (Section 3); finally, we
describe and discuss our empirical evaluations (Sections 4
and 5).

2. RELATED WORK

Among polyphonic structures, voice-leading schemata are
particularly prominent in recent research [3]. Schemata
can be understood as structural building blocks that can
be elaborated in multiple ways. They are defined as fixed
patterns of two to four voices where the soprano and bass
constitute specific patterns relative to the key of the piece
(or a segment within that piece) and may be supplemented
with one or two middle voices. The core challenge from
an MIR perspective is that the structural elements in each
stage of the sequence need not occur simultaneously, ow-
ing to highly flexible note elaborations. Thus, instances of
schemata in the music are “semi-local”. An example of this
problem can be seen in Figure 1. The underlying schema
consists of four stages and is elaborated by neighbor and

547

5̂ 4̂ 4̂ 3̂

#1̂ 2̂ 7̂ 1̂

(a) The “Fonte” schema as characterized by a typical outer-voice
movement in scale degrees

(b) A realization of the Fonte in a piece

Figure 1: An example of a voice-leading schema

passing notes. The first stage consists of non-overlapping
notes, so there is no point in time where both notes sound
together. The same applies for the third stage.

This semi-locality property of schema patterns can be
met by formalizing an extension of the skipgram formal-
ism, which has been successfully applied in linguistics to
sequences of words or letters (for a review see [4]). Skip-
grams in the original version can only be applied to “mono-
phonic” streams like text, melodies or slices of polyphonic
music, as has been done in [10]. The generalized version
of skipgrams as proposed in the present paper allows not
only the application to truly polyphonic streams but also
recursive application, which can be used to build nested
structures like schema patterns.

Previously, polyphonic music was mainly modeled us-
ing slicing techniques, i.e., cutting the piece vertically at
each note onset or offset. In [10], common, index-based
skipgrams as well as an onset-time-based variant are ap-
plied to slices reduced to a “voice-leading type” represen-
tation, similar to the representation used here (for more de-
tails see Section 4.2). The approach presented in this pa-
per takes the idea two steps further by generalizing the cost
function (allowing non-slice representations as input) and
by building even the vertical structure with this generalized
skipgram method, in addition to the horizontal structure.

Multiple viewpoint systems (e.g., [1, 2, 12, 11]) take a
sequence of slices and derive sequence features, or “view-
points”, from it. Polyphonic structure is modeled by in-
cluding information about the continuation of notes across
slices. For prediction, n-grams of all lengths are combined
by comparing all suffixes of a given gram to other grams
of the corresponding length. However, slicing techniques
are generally problematic when grouping non-overlapping
notes, as these are not contained in any single slice.

An alternative to slices is suggested in [6] where poly-
phonic music is encoded as a set of data points in a mul-
tidimensional space. Accordingly, patterns are orthogonal
projections (i.e., considering only some features, not all) of
subsets of the data points that can be translated to a differ-
ent position (in both pitch and time). This translation oper-

0 1 2 3

60

65

70

75

skip within group 1

skip between groups
2 and 3

Time [s]

P
it

ch
 [

se
m

it
on

es
]

Figure 2: An example of applying skipgrams to poly-
phonic music displayed in a piano-roll visualization. The
highlighted notes are members of the skipgram, the stages
are indicated by solid lines between notes belonging to
the same stage. The skip cost within and between stages
is given by inter-onset intervals. This 2 × 4 skipgram
represents the same pattern as the polyphonic schema in
Figure 1.

ation, however, permits only exact matches in the selected
dimensions and cannot account for temporally varied pat-
terns.

3. GRAM-BASED METHODS AND
GENERALIZED SKIPGRAMS

Gram-based methods extract short sequences of entities
from a longer stream of entities (e.g., words, letters, or
notes). The most basic gram model, the n-gram, is just
a consecutive subsequence in the input stream that has n
elements. Skipgrams extend the n-gram idea by allowing
non-adjacent subsequences that “skip” up to k elements
[4].

Both n-grams and skipgrams assume that the distance
between entities is determined by their position in the
stream. While this assumption might be reasonable for
text, it is problematic for other applications that involve
general temporal streams, in particular streams of musical
events such as notes. Therefore, it is desirable to measure
the distance between events (notes) based on their timing
information, i.e., onset, offset, and duration. Second, while
notes might be simultaneous in a score, they occur sequen-
tially in a stream or list-of-notes representation, which be-
comes problematic if distance is measured by index.

Sears et al. [10] avoid the latter problem by operating
on a slice representation of a piece, in which slices have a
unique onset and do not overlap. They partially solve the
first problem by replacing the maximal number of skips
with a maximal inter-onset-interval, i.e., a time-based dis-
tance measure. Our paper presents a generalization of skip-
grams to arbitrary pairwise cost functions for streams that
are monotonic with respect to the cost function, which al-
lows both efficient implementation and streams of overlap-
ping entities.

Consider Figure 2, a piano-roll representation of a poly-

548 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018

phonic piece of music. The notes that make up a single
stage of a voice-leading schema might not be simultane-
ous, but should be close together. Given the notes of the
piece as a list of triples (onset, offset, pitch), candidates
for a schema stage can be found by considering all groups
of notes (pairs, in the case of two voices) that lie within a
certain distance. In the traditional skipgram approach, this
distance would be measured by the index of each note in
the list. However, in the case of voice-leading schemata, it
is more meaningful to measure this distance with respect
to the timing of the notes, e.g., as the distance between on-
sets or the distance between the offset of the earlier and the
onset of the latter note.

Since a voice-leading schema consists of several con-
secutive stages, it is natural to apply this more general idea
of skipgrams again, now to the list possible stages. As
with notes, the distance between two stages can be defined
in several ways, e.g., as the distance from the beginning
of the first stage to the beginning of the second, or the
amount of time between the stages. In the following sec-
tion, an algorithm that enumerates skipgrams over streams
of arbitrary objects for arbitrary definitions of distance is
presented along with some useful extensions.

3.1 The Generalized Skipgram Algorithm

The basic algorithm for generalized skipgrams is shown in
Algorithm 1. It takes a stream of objects (e.g., notes or
schema stages), an upper bound on the allowed “skip” k,
the length of the generated skipgrams n, and a cost func-
tion c. The cost function is used to represent the distance
between two objects: the combined cost across a skipgram
must not be greater than k. While it traverses the input
stream, a set of prefixes (incomplete skipgrams) is main-
tained. For each prefix that can be extended by the current
element without increasing the total cost beyond k, the ex-
tended version is added to the prefix set. Prefixes of length
n are added to the output and removed from the set of pre-
fixes. Finally, the current element starts a new prefix.

In order to keep the set of prefixes small, a prefix is re-
moved as soon as extending it increases the cost beyond k.
As long as the stream is sorted in a way that every subse-
quent element would increase the cost of the prefix even
further, this optimization does not discard valid skipgrams.
That means the input stream input must satisfy

∀x < y < z ∈ input : c(x, y) ≤ c(x, z),

where x < y denotes that x appears before y in input .
The cost function can handle the distance in several

ways. For example, if the distance between the first and
the last note in a skipgram should be limited, then the cost
equals the distance between the onsets of two neighboring
notes in the skipgram. On the other hand, if the distance
between two neighboring notes is to be limited, the cost
can be defined non-continuously as 0 if the notes are within
the allowed distance and k + 1. This way, the combined
cost is 0, except when a single neighbor pair of notes is too
far apart, in which case it exceeds k.

Algorithm 1 The basic algorithm for enumerating gener-
alized skipgrams.

1: function SKIPGRAMS(input , k, n, c)
2: pfxs ← {}
3: output ← []

4: cost(p, x) =
∑l−1

i=1 c(pi, pi+1) + c(pl, x)
5: for x ← input do
6: open ← {p | p ∈ pfxs, cost(p, x) ≤ k}
7: ext ← {p ◦ x | p ∈ open}
8: append(output , [p | p ∈ ext , |p| = n])
9: pfxs ← open ∪ {p | p ∈ ext , |p| < n} ∪ {x}

10: end for
11: return output
12: end function

Note that the skipgram algorithm traverses the input
stream exactly once, so streaming it is straightforward.
Similarly, the output can be streamed instead of collected,
either using some form of concurrency and a channel be-
tween the output of the skipgram generator and some con-
sumer, or non-concurrently using an iterator pattern.

3.2 Early Filtering

If the list of generated skipgrams will be filtered for some
property (e.g., only selecting notes that do not overlap or
that match a given schema prototype), it is desirable to
filter out prefixes that cannot be completed to satisfy the
predicate as early as possible, instead of generating all of
its completions first. Therefore, an extension of Algorithm
1 additionally takes a predicate pred , which it applies to
every generated prefix. Every prefix that does not satisfy
pred is removed. As with the cost function, this predicate
can be defined freely.

3.3 Stable Ordering

Algorithm 1 adds its output in the order in which prefixes
are completed. As a consequence, the output stream does
not retain the order of the first element in each skipgram
with respect to the input order. Instead the input order is
reflected in the last element of each skipgram.

For some applications, it might be desirable to keep the
order of the first elements intact. For example, when com-
puting skipgrams of skipgrams (e.g., first groups of notes,
then sequences of groups), the second skipgram pass ex-
pects its input to be monotonic with respect to the cost
function. In the case of note groups, this will likely depend
on the earliest onset in the group. The first skipgram pass
takes a list of notes ordered by onset, but the note groups
it returns will not be ordered by the onset of their first (and
therefore earliest) note but by the onset of their last note.

In general, the appropriate order of skipgrams can be
obtained by generating the whole list of skipgrams and
sorting it, but this would destroy the streaming property of
the algorithm. As the number of skipgrams grows quickly,
it might not even be feasible to keep all skipgrams in mem-
ory. Furthermore, as k is intended to limit the range of
skipgrams, a skipgram can only be displaced as much as k,

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 549

so the array will almost be sorted, and sorting can be done
on the fly.

Stable ordering can be ensured efficiently by holding
back completed skipgrams (instead of adding them to the
output as soon as they are generated) until no new skip-
grams can be generated that should precede them. This
can be achieved by using a priority queue to hold the fin-
ished but not yet released skipgrams in the correct order. In
each iteration, the open prefixes are searched for the “old-
est” first element. Then, all skipgrams in the output queue
starting with an element not younger than this oldest ini-
tial prefix element are released. If the output needs to be
ordered lexicographically, the queue content must be com-
pared not to the oldest initial element but to the complete
lexicographically oldest open prefix. The queue can be up-
dated efficiently by sorting the newly generated prefixes
and merging the resulting list with the existing queue as in
a merge sort.

3.4 Sampling Skipgrams

The number of generated skipgrams as well as the asymp-
totic runtime of the algorithm are difficult to estimate, as
they depend on the number of elements within a range of
k or the number of currently open prefixes, respectively, at
any point in the stream. This, in turn, depends on the com-
bination of input and cost function, so no general statement
about runtime and space complexity can be made without
knowing both. In the worst case, generalized skipgrams
consist of all subsets of length n from the list of L entities,
generating

(
L
n

)
skipgrams.

Because this amount of skipgrams is costly to enumer-
ate and process, an alternative is to uniformly draw sam-
ples from the list of all skipgrams. For a given probability
p, a biased coin is tossed for each skipgram, which deter-
mines whether the skipgram is selected or not. If this is
done after the skipgram is completely generated, all skip-
grams must be enumerated once, so computation time is
saved only during consumption but not production. Con-
versely, one could toss the coin for each new prefix of
length 1. This way, all extensions of a discarded prefix
need not be computed, which saves computation time but
also removes a whole family of related skipgrams from the
output.

A third approach combines the other two by tossing a
coin each time a prefix is extended. As this happens n− 1
times for a prefix of length n (not counting the creation of
the initial length 1 prefix), so the coin is biased not with p
but with p′ = n−1

√
p. This way, a skipgram is only included

if all of its prefix extensions succeed, i.e., with probability
(p′)n−1 = p. Furthermore, computation time can be saved
by discarding short prefixes, while variety is preserved by
also discarding prefixes in later stages.

With this method, it is not possible to uniformly draw
a fixed number of samples. However, the expected num-
ber of samples can be estimated by choosing a small p and
extrapolating the resulting amount of sampled skipgrams.
The total number of skipgrams N can be estimated simi-
larly, as the number of sampled skipgrams is expected to

be Np.

4. SKIPGRAMS ON POLYPHONIC MUSIC

4.1 Dataset

The described method is applied to 17 piano sonatas by
Wolfgang Amadeus Mozart in MIDI format. 1 A schema
has 2 or 3 voices and consists of 2 to 4 stages. These
dimensions of a schema are notated as voices × stages
or nv × ns. and the sampling parameters pv and ps are
adapted to these dimensions. The skip limit within a stage
kv is one bar in total, the limit between the stages ks is also
one bar, but per pair of stages.

4.2 Method

For the discovery of musical schemata, three assumptions
are made. First, schemata are semi-local structures, that
is, they extend over a limited range of time. This prop-
erty is inherent in the skipgram formalism with an appro-
priate cost function. Second, they consist of a horizon-
tal sequence of pseudo-vertical structures, which consist
of a fixed number of possibly non-simultaneous or even
non-overlapping notes. Third, patterns are characterized
by their pitch content, not by their temporal properties.
This pitch content is subject to certain equivalences, e.g.,
regarding transposition of the whole pattern or the exact
octave of each pitch.

In order to find vertical structures in polyphonic pieces,
skipgrams can be applied to a stream of notes. Each note
has a pitch, an onset and an offset, and the notes are sorted
by their onsets. For this purpose, the cost function is the
difference between the onsets of two notes in the skipgram

cv(n1, n2) = onset(n2)− onset(n1),

which in sum amounts to the onset difference between the
earliest and the latest note in the group. This allows notes
to overlap but restricts their temporal distance. The stable
variant of the skipgram algorithm is used to ensure that
the output stream is again ordered by (earliest) onset. The
number of notes nv in the first pass can be regarded as the
number of voices in the vertical structure.

A second skipgram pass builds length ns sequences of
vertical structures by taking the output of the first pass as
the new input. Since these structures should be horizon-
tally organized, temporal overlap between their stages is
forbidden (by defining an appropriate pred). The amount
of time between the onsets of slices is restricted by a step
function that admits a skip up to ks for each pair of neigh-
bors:

cs(s1, s2) =

{
0 if onset(s2,1)− onset(s1,1) ≤ ks

ks + 1 otherwise.

Due to the large amount of skipgrams generated, the sam-
pling parameters are adapted to the number of voices (pv)

1 Encoded by Craig Sapp in Kern format and converted to
MIDI. Available at https://github.com/craigsapp/
mozart-piano-sonatas.

550 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018

nv ns ps pv sampled total cov

2 2 1.0 1.0 3.30 · 108 108 1.0
2 3 1.0 0.001 9.92 · 107 1011 0.99998
2 4 1.0 10−6 3.77 · 107 1013 0.30
3 2 0.1 1.0 3.53 · 108 1010 0.9997

Table 1: The combinations of parameters used to generate
the results. For each combination, the sampled and the
rough estimated total number of skipgrams, as well as the
coverage are given. Coverage is the ratio of the number of
skipgram classes encountered and the number of possible
classes for the given dimensions (12nvns−1). 2

and stages (ps). An example of such a nested skipgram is
shown in Figure 2.

The pitch content of the resulting structures is sum-
marized by summing the occurrences of skipgrams with
similar pitch content (“skipgram classes”). Pitch combi-
nations are grouped by sorting the pitches in each stage
in ascending order, removing octave information (pitch
classes), and transposing every pitch class relative to the
lowest note of the first stage. For example, the sequence
(f, c′, a′) → (e, c′, g′) would be encoded as (0, 7, 4) →
(11, 7, 2). This is similar but not identical to the voice-
leading type representation used in [10], which addition-
ally removes the order of the pitches and the magnitude
of each pitch class. Since the focus here is on polyphonic
voice-leading schemata, both order and magnitude are re-
tained. For nv voices and ns stages, there are 12nvns−1

possible skipgram classes, as the transposition step always
sets the first bass note to 0.

5. RESULTS AND DISCUSSION

5.1 Results

Table 1 gives an overview of the used parameter combina-
tions. For each set of parameters, it shows the number of
generated skipgrams, the estimated number of total skip-
grams, as well as the coverage, which is the ratio of the
number of encountered skipgram classes and the number
of possible classes for the given dimensions. Good cov-
erage is important for prediction tasks, where the zero-
frequency problem occurs (i.e., where a prediction context
has not been encountered at least once, see [10]).

As the outer-voice movement is most characteristic of
voice-leading schemata, the most general insight can be
provided by two-voiced skipgram classes, which also have
a good coverage for reasonable computational effort. Ad-
ditionally, the 3 × 2 skipgrams were generated to observe
the effect of increasing the number of voices on the found
patterns. Larger dimensions did not produce a sufficient
coverage due to computational constraints. The total num-
ber of skipgrams without sampling can be estimated by

2 Runtimes ranged from a few minutes to several hours. While paral-
lelization was straightforward by splitting the dataset, memory usage was
problematic and prevented generating skipgrams with larger dimensions.

class abs rel

1 (0, 3)→ (0, 2)→ (10, 2)→ (10, 0) 1190 0.32
2 (0, 3)→ (3, 3)→ (0, 3)→ (3, 3) 1029 0.27
3 (0, 1)→ (10, 1)→ (8, 0)→ (8, 10) 1009 0.27
4 (0, 0)→ (5, 0)→ (0, 0)→ (5, 0) 976 0.26
5 (0, 0)→ (9, 0)→ (5, 0)→ (0, 0) 964 0.26
6 (0, 3)→ (3, 3)→ (8, 3)→ (3, 3) 937 0.25
7 (0, 1)→ (10, 1)→ (0, 0)→ (8, 10) 934 0.25
8 (0, 0)→ (9, 0)→ (0, 0)→ (9, 0) 921 0.24
9 (0, 0)→ (10, 1)→ (10, 0)→ (8, 10) 902 0.24
10 (0, 3)→ (0, 1)→ (10, 1)→ (10, 0) 897 0.24

Table 2: The 10 most frequent 2× 4 skipgram classes that
have no repeating stages

multiplying the sampled skipgrams with ps(p
ns
v). pv needs

to be exponentiated, as it factors in the output probability
of a skipgram on each of its stages.

Table 3 shows the 10 most frequent skipgram classes
found for each set of parameters. As the most frequent
patterns mainly indicate arpeggiation patterns (see Section
5.2), an additional filter is applied to the 2 × 4 skipgrams,
which forbids the repetition of a stage. The resulting 10
most frequent patterns are shown in Table 2.

In addition to enumerating (or sampling from) all skip-
grams in the corpus, the generalized skipgram algorithm
can be used as a pattern matcher or schema finder. Figure 2
shows the first skipgram matching a two voiced pattern
(0, 6) → (1, 4) → (10, 4) → (11, 3) in the third move-
ment of Mozart’s third piano sonata (from which the exam-
ple in Figure 1 is taken), found by enumerating the pieces
2 × 4 skipgrams. Pattern matching can be performed effi-
ciently by using the early filtering mechanism described in
Section 3.2 to remove prefixes that cannot match.

5.2 Discussion

As Table 1 shows, even with moderate sampling the cov-
erage is excellent for smaller dimensions. As the dimen-
sions increase and the sampling probability decreases, the
coverage rapidly decreases as well, because the large num-
ber of possible pitch combinations conflicts with the in-
creased need for reducing the computational effort via
sampling. For example, for 2 voices and 4 stages, there
are 127 ≈ 3.58 · 107 possible skipgram classes, but the to-
tal number of sampled skipgrams was only 3.77 · 107. In
principle, however, the flexibility of nested skipgrams pro-
vides a good coverage, confirming the results in [10] for
flat skipgrams. For larger problem instances of up to 4× 4
skipgrams, the computational problem can be solved by
good parallelization and sufficient computation resources.

Based on frequency, the patterns found in the corpus
are dominated by interval combinations as they appear in
major and minor triads, followed by simple step-wise rela-
tions. This cannot be explained by the fact that the mu-
sic of Mozart is mostly triadic to a large extent, as the
stages of a single skipgram are strictly non-simultaneous.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 551

In music that is triadic but consists of sequences of non-
arpeggiated, non-repeating chords, the stages of a skip-
gram will be taken from different chords. Thus, the found
patterns reveal the usage of harmonic surface patterns such
as Alberti bass. This becomes especially clear from vari-
ants of (0, 0) → (5, 0) and (0, 0) → (9, 0), which are
consistently ranked very high and indicate a prevalence of
the fifth in combination with the third or the root of a major
triad, resembling the Alberti bass pattern.

In contrast, the filtered patterns shown in Table 2 mainly
consist of instances of the typical voice-leading pattern of
descending 3-2 suspension sequences. This pattern is used
as a typical elaboration procedure in several voice-leading
schemata. This finding shows that nested skipgrams are
very well capable of representing polyphonic structures.
The remaining question is how to automatically distinguish
surface patterns from patterns on higher structural levels in
the generated skipgrams.

6. CONCLUSION

The results clearly show that the generalized skipgram for-
malism is capable of modeling streams of events that have
a non-flat shape, such as streams of notes in polyphonic
music. The monotonicity property explained in Section 3.1
is a general criterion for the applicability of the presented
algorithm. Thus, generalized skipgrams can prove useful
for a wide range of problems from various domains other
than music that deal with sequential but overlapping data.

With respect to polyphonic music, generalized skip-
grams provide a powerful mechanism for accessing poly-
phonic structure, solving the problem of building vertical
structures from non-overlapping notes. Hence, a poten-
tially powerful application of generalized skipgrams is to
use them as the basic representation in variety of other
methods that provide rich pattern languages, replacing the
currently used sequence-of-slices structure. For example,
it is possible to apply viewpoint techniques to the skip-
grams generated from a polyphonic stream.

Finally, the skipgram approach requires very little as-
sumptions on its own, but can easily be extended to filter
for more advanced, theoretically or empirically motivated
properties. The discovery of schema-like patterns, for ex-
ample, will require to add appropriate filters that separate
surface from middleground patterns. This helps to advance
the understanding of the essential properties of schemata,
as the added assumptions can be clearly separated from the
ones inherent in the skipgram representation.

7. ACKNOWLEDGEMENTS

The research presented in this paper is generously sup-
ported by the Volkswagen Foundation and Claude Latour.
We also thank the anonymous reviewers for their helpful
comments.

class abs rel

1 (0, 0)→ (0, 0) 3.3e6 10.0
2 (0, 0)→ (5, 0) 1.38e6 4.18
3 (0, 0)→ (0, 5) 1.34e6 4.06
4 (0, 0)→ (9, 0) 1.34e6 4.06
5 (0, 0)→ (7, 0) 1.32e6 4.01
6 (0, 7)→ (7, 7) 1.31e6 3.96
7 (0, 5)→ (0, 0) 1.28e6 3.89
8 (0, 3)→ (3, 3) 1.27e6 3.86
9 (0, 0)→ (0, 7) 1.22e6 3.7
10 (0, 0)→ (10, 0) 1.21e6 3.68

1 (0, 0)→ (0, 0)→ (0, 0) 121073 1.22
2 (0, 0)→ (0, 0)→ (9, 0) 44143 0.44
3 (0, 0)→ (0, 0)→ (5, 0) 43764 0.44
4 (0, 0)→ (5, 0)→ (0, 0) 40859 0.41
5 (0, 3)→ (3, 3)→ (3, 3) 40543 0.40
6 (0, 7)→ (7, 7)→ (7, 7) 39470 0.39
7 (0, 0)→ (9, 0)→ (0, 0) 39056 0.39
8 (0, 0)→ (0, 0)→ (10, 0) 34975 0.35
9 (0, 0)→ (0, 0)→ (0, 5) 29343 0.29

10 (0, 0)→ (0, 0)→ (7, 0) 28667 0.28

1 (0, 0)→ (0, 0)→ 6381 0.169
(0, 0)→ (0, 0)

2 (0, 0)→ (0, 0)→ 2436 0.065
(0, 0)→ (9, 0)

3 (0, 0)→ (0, 0)→ 2386 0.063
(0, 0)→ (5, 0)

4 (0, 0)→ (0, 0)→ 2184 0.058
(9, 0)→ (0, 0)

5 (0, 0)→ (0, 0)→ 2173 0.058
(5, 0)→ (0, 0)

6 (0, 0)→ (5, 0)→ 2075 0.055
(0, 0)→ (0, 0)

7 (0, 3)→ (3, 3)→ 2031 0.054
(3, 3)→ (3, 3)

8 (0, 0)→ (9, 0)→ 2001 0.053
(0, 0)→ (0, 0)

9 (0, 7)→ (7, 7)→ 1918 0.051
(7, 7)→ (7, 7)

10 (0, 0)→ (0, 0)→ 1753 0.046
(0, 0)→ (10, 0)

1 (0, 0, 0)→ (0, 0, 0) 461238 1.31
2 (0, 0, 0)→ (9, 0, 0) 214255 0.61
3 (0, 3, 3)→ (3, 3, 3) 208562 0.59
4 (0, 0, 0)→ (5, 0, 0) 205212 0.58
5 (0, 7, 7)→ (7, 7, 7) 200170 0.57
6 (0, 3, 3)→ (0, 3, 3) 172370 0.49
7 (0, 0, 0)→ (10, 0, 0) 162212 0.46
8 (0, 2, 2)→ (2, 2, 2) 133658 0.38
9 (0, 7, 7)→ (0, 7, 7) 131357 0.37
10 (0, 0, 2)→ (0, 0, 0) 128846 0.37

Table 3: The 10 most frequent 2 × 2, 2 × 3, 2 × 4, and
3 × 2 skipgram classes. Relative frequencies have been
scaled by 103 and rounded appropriately.

552 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018

8. REFERENCES

[1] D. Conklin. “Representation and Discovery of Ver-
tical Patterns in Music”. In: Music and Artificial
Intelligence. Ed. by C. Anagnostopoulou, M. Fer-
rand, and A. Smaill. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 32–42. ISBN: 978-3-
540-45722-0.

[2] D. Conklin and M. Bergeron. “Discovery of Con-
trapuntal Patterns”. In: Proceedings of the 11th In-
ternational Society for Music Information Retrieval
Conference, ISMIR 2010, Utrecht, Netherlands, Au-
gust 9-13, 2010. Ed. by J. S. Downie and R. C.
Veltkamp. International Society for Music Informa-
tion Retrieval, 2010, pp. 201–206. ISBN: 978-90-
393-5381-3.

[3] R. Gjerdingen. Music in the Galant Style. Oxford,
New York: Oxford University Press, Oct. 11, 2007.
528 pp. ISBN: 978-0-19-531371-0.

[4] D. Guthrie, B. Allison, W. Liu, L. Guthrie, and Y.
Wilks. “A Closer Look at Skip-Gram Modelling”.
In: Proc. of the 5th International Conference on
Language Resources and Evaluation (LREC-2006).
European Language Ressources Association, 2006,
pp. 1222–1225.

[5] O. Lartillot. “In-Depth Motivic Analysis Based
on Multiparametric Closed Pattern and Cyclic Se-
quence Mining”. In: Proceedings of the 15th In-
ternational Society for Music Information Retrieval
Conference, ISMIR 2014, Taipei, Taiwan, October
27-31, 2014. Ed. by H.-M. Wang, Y.-H. Yang, and
J. H. Lee. 2014, pp. 361–366.

[6] D. Meredith, K. Lemström, and G. A. Wiggins.
“Algorithms for Discovering Repeated Patterns in
Multidimensional Representations of Polyphonic
Music”. In: Journal of New Music Research 31.4
(Dec. 1, 2002), pp. 321–345. ISSN: 0929-8215. DOI:
10.1076/jnmr.31.4.321.14162.

[7] M. T. Pearce and G. A. Wiggins. “Expectation in
Melody: The Influence of Context and Learning”.
In: Music Perception: An Interdisciplinary Journal
23.5 (July 1, 2006), pp. 377–405. ISSN: 0730-7829,
1533-8312. DOI: 10.1525/mp.2006.23.5.
377.

[8] M. Pearce and G. Wiggins. “Improved Methods for
Statistical Modelling of Monophonic Music”. In:
Journal of New Music Research 33.4 (Dec. 1, 2004),
pp. 367–385. ISSN: 0929-8215. DOI: 10.1080/
0929821052000343840.

[9] P.-Y. Rolland. “Discovering Patterns in Musical Se-
quences”. In: Journal of New Music Research 28.4
(Dec. 1, 1999), pp. 334–350. ISSN: 0929-8215. DOI:
10.1076/0929-8215(199912)28:04;1-
O;FT334.

[10] D. R. W. Sears, A. Arzt, H. Frostel, R. Sonnleitner,
and G. Widmer. “Modeling Harmony with Skip-
Grams”. In: Proceedings of the 18th International
Society for Music Information Retrieval Confer-
ence, ISMIR 2017, Suzhou, China, October 23-27,
2017. Ed. by S. J. Cunningham, Z. Duan, X. Hu, and
D. Turnbull. 2017, pp. 332–338. ISBN: 978-981-11-
5179-8.

[11] R. P. Whorley, C. Rhodes, G. Wiggins, and M. T.
Pearce. “Harmonising Melodies: Why Do We Add
the Bass Line First?” In: International Conference
on Computational Creativity. Sydney, 2013, pp. 79–
86.

[12] R. P. Whorley, G. Wiggins, C. Rhodes, and M. T.
Pearce. “Development of Techniques for the Com-
putational Modelling of Harmony”. In: International
Conference on Computational Creativity. Coimbra,
Portugal, 2010, pp. 11–15.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 553

