
BRIDGING AUDIO ANALYSIS, PERCEPTION AND SYNTHESIS WITH
PERCEPTUALLY-REGULARIZED VARIATIONAL TIMBRE SPACES

Philippe Esling, Axel Chemla–Romeu-Santos, Adrien Bitton
Institut de Recherche et Coordination Acoustique-Musique (IRCAM)

CNRS - UMR 9912, UPMC - Sorbonne Universite
1 Place Igor Stravinsky, F-75004 Paris, France

{esling, chemla, bitton}@ircam.fr

ABSTRACT

Generative models aim to understand the properties of
data, through the construction of latent spaces that allow
classification and generation. However, as the learning is
unsupervised, the latent dimensions are not related to per-
ceptual properties. In parallel, music perception research
has aimed to understand timbre based on human dissimi-
larity ratings. These lead to timbre spaces which exhibit
perceptual similarities between sounds. However, they
do not generalize to novel examples and do not provide
an invertible mapping, preventing audio synthesis. Here,
we show that Variational Auto-Encoders (VAE) can bridge
these lines of research and alleviate their weaknesses by
regularizing the latent spaces to match perceptual distances
collected from timbre studies. Hence, we propose three
types of regularization and show that they lead to spaces
that are simultaneously coherent with signal properties and
perceptual similarities. We show that these spaces can be
used for efficient audio classification. We study how audio
descriptors are organized along the latent dimensions and
show that even though descriptors behave in a non-linear
way across the space, they still exhibit a locally smooth
evolution. We also show that, as this space generalizes to
novel samples, it can be used to predict perceptual similar-
ities of novel instruments. Finally, we exhibit the genera-
tive capabilities of our spaces, that can directly synthesize
sounds with continuous evolution of timbre perception.

1. INTRODUCTION

Generative models aim to understand the underlying dis-
tribution of data based on the observation of examples,
in order to generate novel content. Recently, audio syn-
thesis using these models has seen great improvements
through efficient waveform models, such as WaveNet [19]
and SampleRNN [17]. These models are able to generate
high-quality audio matching the properties of the corpus
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they have been trained on. However, these models give lit-
tle control over the output or the hidden features it results
from. More recently, NSynth [4] has been proposed to gen-
erate instrumental notes, while allowing to morph between
specific instruments. However, these models remain highly
complex, requiring very large number of parameters, long
training times and a large number of examples.

Amongst recent generative models, a key proposal is
the Variational Auto-Encoder (VAE) [11]. In these models,
encoder and decoder networks are jointly trained through
the construction of a latent space, that allow both analysis
and generation. VAEs address all the limitations of con-
trol and analysis through this latent space, while remaining
simple and fast to learn without requiring large sets of ex-
amples. Furthermore, the VAE seems able to disentangle
underlying variation factors by learning independent latent
variables [7]. However, these unsupervised dimensions are
not related to perceptual properties, which might hamper
the control and use of these spaces for analysis and synthe-
sis. The potential of VAEs for audio applications has only
been scarcely investigated and mostly for speech source
separation [13] and transformation [8]. However, the use
of variational latent spaces specifically for musical audio
synthesis is yet to be investigated.

In parallel, music perception research has tried to under-
stand the mechanisms behind the perception of instrumen-
tal timbre. Several studies [15] collected dissimilarity rat-
ings between pairs of instrumental samples. Then, Multi-
Dimensional Scaling (MDS) is applied to these ratings to
obtain timbre spaces, which exhibit the perceptual similar-
ities between instruments. Although these spaces provide
interesting analyses, they are inherently limited by the fact
that MDS produces a fixed discrete space, which has to be
recomputed for any new sample. Therefore, these spaces
do not generalize to novel examples and do not provide an
invertible mapping, preventing audio synthesis.

Here, we show that we can bridge analysis, synthesis
and perceptual audio research by regularizing the learning
of latent spaces so that they match the perceptual distances
from timbre studies. Our overall approach is depicted in
Figure 1. First, we adapt the VAE to analyze musical au-
dio content, by relying on the Non-Stationary Gabor Trans-
form (NSGT) with a Constant-Q scale. This transform al-
lows us to obtain a log-frequency scale while remaining in-
vertible, which is critical to perform audio synthesis. Even
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with a simple model on a small training set, we show that
this provides a generative model with an interesting latent
space, able to synthesize novel instrumental sounds.

Then, we propose three regularizations to the learn-
ing objective, aiming to enforce that the latent space ex-
hibits the same topology as the topology of timbre spaces.
We build a model of perceptual relationships by normal-
izing dissimilarity ratings from five timbre space studies
[5, 9, 12, 14, 16]. We show that perceptually-regularized
latent spaces are both coherent with perceptual dissimilar-
ities, while being able to reconstruct audio samples with a
high accuracy. Hence, we can drive the learning of the la-
tent space to match the topology of any given target space.

We demonstrate that these spaces can be used for au-
dio classification by training low-capacity classifiers on the
spaces. We obtain high accuracy for family and instrument
labels, but also for the pitch and dynamics, even though the
model had no information on these during training. We ex-
hibit the generative capabilities of our spaces, by assessing
the reconstruction quality of the model on a test dataset.
We show that the latent spaces can be directly used to syn-
thesize sounds with continuous evolution of timbre percep-
tion. We also show that these spaces generalize to novel
samples, by encoding instruments that were not part of the
training set. Therefore, the spaces could be used to predict
the perceptual similarities of novel instruments. Finally,
we study how audio descriptors behave along the latent di-
mensions, by generating audio samples on a grid across
space. We show that even though descriptors behave in a
non-linear way across the space, they still follow a locally
smooth evolution. Our source code, audio examples and
additional figures and animations are available online 1 .

2. STATE-OF-ART

2.1 Variational auto-encoders

Generative models are a flourishing class of machine learn-
ing approaches, aiming to find the underlying probability
distribution of the data p(x) [2]. Formally, based on a
set of examples in x ∈ Rdx , we assume that these fol-
low an unknown probability distribution p (x). Further-
more, we consider a set of latent variables defined in a
lower-dimensional space z ∈ Rdz (dz � dx), a higher-
level representation that could have led to generate a given
example. These latent variables help govern the distribu-
tion of the data and enhance the expressivity of the model.
The complete model is defined by the joint probability dis-
tribution p(x, z) = p(x | z)p(z). We could find p(x) by
marginalizing z from the joint probability. However, for
most models, this integral can not be found in closed form.

Recently, variational inference (VI) has been proposed
to solve this problem through optimization. VI assumes
that if the distribution is too complex to find, we could
find a simpler approximate distribution that still models the
data, while trying to minimize its difference to the real dis-
tribution. VI specifies a familyQ of approximate densities,

1 https://github.com/acids-ircam/ismir2018
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Figure 1. The VAE models audio samples x by learning an
encoder qφ(z |x) which maps them to a GaussianN (µ(x),
σ(x)) in latent space z. The decoder pθ(x|z) samples from
this Gaussian to generate a reconstruction x̃. Perception
studies use dissimilarity ratings to construct a timbre space
that exhibits the perceptual distances between instruments.
Here, we develop regularizations methods R(z, T ), to en-
force that the variational model finds a topology of latent
space z that matches the topology of the timbre space T .

where each member q(z|x) ∈ Q is a candidate approxima-
tion to the exact conditional p (z | x). Hence, the inference
can be transformed into an optimization problem by mini-
mizing the Kullback-Leibler (KL) divergence between the
approximation and the original density

q∗(z | x) = argmin
q(z | x)∈Q

DKL
[
q (z | x) ‖ p (z | x)

]
(1)

By developing this KL divergence and re-arranging terms
(the detailed development can be found in [11]), we obtain

log p(x)−DKL

[
q(z | x) ‖ p(z | x)

]
=

Ez

[
log p(x | z)

]
−DKL

[
q(z | x) ‖ p(z)

]
(2)

This formulation describes the quantity we want to max-
imize log p(x) minus the error we make by using an ap-
proximate q instead of p. Therefore, we can optimize
this alternative objective, called the evidence lower bound
(ELBO). Now, to optimize this objective, we will rely on
parametric distributions qφ(z) and pθ(z). Optimizing our
generative model will amount to optimizing these parame-
ters

{
θ, φ
}

of these distributions with

Lθ,φ = E
[
log pθ(x|z)

]
−β ·DKL

[
qφ(z|x) ‖ pθ(z)

]
(3)

We can see that this equation involves qφ(z | x) which en-
codes the data x into the latent representation z and a de-
coder p(x |z), which allows generating a data x given a la-
tent configuration z. Hence, this structure defines the Vari-
ational Auto-Encoder (VAE), depicted in Figure 1 (Left).
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The VAE objective can be interpreted intuitively. The
first term increases the likelihood of the data generated
given a configuration of the latent, which amounts to mini-
mize the reconstruction error. The second term represents
the error made by using a simpler distribution qφ(z | x)
rather than the true distribution pθ(z). Therefore, this reg-
ularizes the choice of approximation q so that it remains
close to the true posterior distribution [11]. Here, we also
introduced a weight β on the KL divergence, which has
been shown to improve the capacity of the model to disen-
tangle factors of variations in the data [7].

VAEs are powerful representation learning frameworks,
while remaining simple and fast to learn without requiring
large sets of examples [18]. Their potential for audio appli-
cations have been only scarcely investigated yet and mostly
in topics related to speech processing such as blind source
separation [13] and speech transformation [8]. However,
to our best knowledge, the use of VAE to perform musical
audio analysis and generation has yet to be investigated.

2.2 Timbre spaces and auditory perception

For decades, researchers have tried to understand the
mechanisms of timbre perception. Timbre is the set of
properties that distinguishes two instruments playing the
same note at the same intensity. Several studies tried to un-
derstand this phenomenon by relying on timbre spaces [6],
a model that aims to organize audio samples based on hu-
man dissimilarity ratings. The experimental protocol con-
sists of presenting pairs of sounds to subjects. Each subject
has to rate the perceptual dissimilarity of all pairs of sam-
ples inside a selected set of instruments. Then, these rat-
ings are compiled into a set of dissimilarity matrices that
are analyzed with Multi-Dimensional Scaling (MDS). The
MDS algorithm provides a timbre space that exhibits the
perceptual distances between different instruments. This
process is depicted in Figure 1 (Right). Here, we briefly
detail the studies and redirect the interested readers to the
full articles for more details.

In his seminal paper, Grey [5] performed a study with
16 instrumental sound samples in which 22 subjects had to
rate their dissimilarities on a continuous scale from 0 (most
similar) to 1 (most dissimilar), leading to the first construc-
tion of a timbre space. Following this study, Krumhansl
[12] used 21 instruments with 9 subjects on a discrete scale
from 1 to 9, Iverson et al. [9] with 16 samples and 10
subjects on a continuous scale from 0 to 1, McAdams et
al. [16] with 18 instruments and 24 subjects on a discrete
scale from 1 to 16 and, finally, Lakatos [14] with 17 sub-
jects and different instrument sets on a continuous scale
from 0 to 1. Each of these studies shed light on different
aspects of audio perception, depending on the interpreta-
tion of the dimensions. However, all studies produced dif-
ferent spaces with different dimensions, preventing a gen-
eralization on the acoustic cues that might correspond to
timbre dimensions. Furthermore, these studies are inher-
ently limited by the fact that ordination techniques (e.g.
MDS) produce fixed spaces that must be recomputed for
any new data point [16]. Hence, these spaces are unable

to generalize nor can we generate data from these as they
do not provide an invertible mapping. Here, we show that
learning latent spaces, while regularizing their topology to
fit perceptual ratings can alleviate these limitations.

3. REGULARIZING THE TOPOLOGY OF
LATENT SPACES

We show that we can influence the learning of the latent
space z so that it follows the topology of a given target
space T . Here, we rely on timbre spaces based on percep-
tual ratings as a target space. However, it should be noted
that this idea can be applied to any target space. Here, we
consider a set of audio samples xi where each have rela-
tions in both latent space zi and target space Ti. In order to
relate the elements of the audio set to the perceptual space,
we consider that each sample is labeled with its instrumen-
tal class Ci, that has an equivalent in the timbre space.

3.1 Penalty regularization

First, we define an additive penalty regularizationR (z, T )
that imposes that the properties of the latent z are similar
to that of the target T . Our objective becomes

E
[
log pθ(x|z)

]
− βDKL

[
qφ(z|x) ‖ pθ(z)

]
+ αR

(
z, T

)

Hence, amongst two otherwise equal solutions, the model
is pushed to select the one that comply with the penalty.
The weight α allows us to control the influence of this reg-
ularization. In our case, we want the distances between
instruments to follow the perceptual distances. There-
fore, we need to minimize the differences between the dis-
tances in latent space Dz

i,j = D(zi, zj) and in target space
DTi,j = D(Ti, Tj). The regularization criterion will mini-
mize the differences between these sets of distances

R
(
z, T

)
=
∑

i6=j

Ri,j
(
z, T

)
=
∑

i 6=j

R
(
Dz
i,j ,DTi,j

)
(4)

Euclidean. First, we rely on the Euclidean distance to
compute the distance between points in both spaces with
DSi,j = ‖Si − Sj‖2 and also to compare distance matrices

Ri,j
(
z, T

)
=
∥∥Dz

i,j −DTi,j
∥∥2 (5)

This regularization provides an incentive to the model to
obtain the Euclidean metric properties of the target space.
Gaussian. Here, we model the fact that perceptual rat-
ings are subjective assessments. Therefore, we consider
that each perceptual rating between instruments i and j is
drawn from a univariate Gaussian di,j ∼ N

(
µi,j , σi,j

)
.

As we can see, we define a different distribution for each
pair of instruments. When evaluating the regularization,
we draw a different distance at each iteration for all pairs

{
DTi,j

}
it
∼ N

(
µi,j , σi,j

)

Hence, this regularization models the uncertainty present
in the set of perceptual ratings.
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3.2 Prior regularization

In the VAE objective, we observe that the prior p(z) al-
ready carries information on the organization of the latent
space. Therefore, we can inject the desired topology of the
latent space inside that term. Here, we propose to intro-
duce a class-based prior

p(zi) = N (µT (Ci), σT (Ci))

where Ci is the class of element i. Therefore, this prior
pushes the VAE to find a configuration of the samples in
latent space so that they follow the same distribution as
their class in our target timbre space. The computation of
class means µT (Ci) and covariances σT (Ci) based on the
perceptual ratings is detailed in Section 4.1.

4. EXPERIMENTS

4.1 Datasets

Timbre studies. We rely on perceptual dissimilarity rat-
ings collected across five independent timbre studies [5, 9,
12, 14, 16], detailed globally in [3, 15]. As discussed ear-
lier (Section 2.2), even though all studies follow the same
protocol, there are some discrepancies in the instruments,
number of participants and rating scales.

Hence, we normalize the dissimilarity ratings so that all
studies map to a common scale from 0 to 1. Then, we
compute the maximal set of instruments for which we had
pairwise ratings for all pairs by counting co-occurences
in studies. This leads to a set of 11 instruments (Piano,
Cello, Violin, Flute, Clarinet, Trombone, Horn, Oboe, Sax-
ophone, Trumpet, Tuba). Finally, we extract the set of rat-
ings that corresponds to our selected instruments, amount-
ing to a total of 11845 pairwise ratings. Based on this set of
ratings, we compute an MDS space to obtain the positions
in target space of each instrument (which also corresponds
to the mean µT ) and to ensure the consistency of our nor-
malized perceptual space. For all pairs of instruments, we
also fit a Gaussian distribution to the pairwise dissimilar-
ity ratings in order to obtain the mean µi,j and variance
σi,j of that pair for the Gaussian regularization. We derive
the global variance σT for each instrument, by taking the
mean of their pairwise variances. Results of this analysis
are displayed in Figure 2. Even though ratings come from
different studies, the resulting space appears very coherent
with clusters of families and the distances between individ-
ual instruments correlated to previous perceptual studies.

Audio datasets. In order to learn the distribution of in-
strumental audio, we rely on the Studio On Line (SOL)
database [1]. We selected 2,200 samples to represent the
11 instruments for which we extracted perceptual ratings.
These represent the whole tessitura and dynamics avail-
able (to remove effects from the pitch and loudness). All
recordings were resampled to a sampling rate of 22050Hz.
For each audio sample, we compute the Non-Stationary
Gabor Transform (NSGT) mapped on a Constant-Q scale
of 24 bins per octave. We only keep the magnitude of the
NSGT to train our models. Then, we perform a corpus-
wide normalization to preserve the relative intensities of
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Figure 2. Multi-dimensional scaling (MDS) applied to the
combined normalized set of perceptual dissimilarity rat-
ings (strings in blue, brasses in green and winds in red).

the samples and extract a single temporal frame to repre-
sent the given audio sample. Finally, the dataset is ran-
domly split between a training (90%) and test (10%) set.

4.2 Models

In order to evaluate our proposal, we rely on a very sim-
ple VAE architecture to show its efficiency. The encoder
is defined as a 3-layers feed-forward network with ReLU
activations and 3000 units per layer. The last layer maps
to a latent space of 64 dimensions. The decoder is defined
with the same architecture, mapping back to the dimen-
sionality of the input. For learning the model, we use a
value of β, which is linearly increased from 0 to 2 during
the first 100 epochs (warmup procedure [18]). In order to
train the model, we rely on the ADAM optimizer [10] with
an initial learning rate of 0.00001, and a Xavier weight ini-
tialization [18]. In a first stage, we train the model without
perceptual regularization (α = 0) for 5000 epochs. Then,
we introduce the perceptual regularization (α = 1) and
train for another 1000 epochs. This allows the model to
first focus on the quality of the reconstruction with its own
unsupervised regularization, and then to converge towards
a solution with perceptual space properties. This leads to a
training time of one hour on a NVIDIA Titan X GPU.

5. RESULTS

5.1 Latent spaces properties

In order to visualize the latent spaces, we apply a Principal
Component Analysis (PCA) to obtain a 3d representation.
Using a PCA ensures that the representation is a linear
transform that preserves the distances inside the original
space. This also provides an exploitable control space for
audio synthesis. Results are displayed in Figure 3.

As we can see, the VAE without regularization is al-
ready able to dissociate instrumental distributions, while
providing almost perfect reconstruction of audio samples
from the low-dimensional space. This confirms that VAEs
can provide interesting latent spaces for analysis and syn-
thesis. However, the relationships between instruments are
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regularization. The mean L2 differences between latent and timbre spaces distances is indicated on each graph. We show
under each space the reconstruction of NSGT distributions from the test set directly from these spaces.

entirely different from perceptual ratings. Furthermore, the
large variance of the distributions seem to indicate that the
model rather tries to spread the information across the la-
tent space to help the reconstruction.

In the case of all regularizations (b-d), we can clearly
see the enhancement on the dissociation of instrumental
distributions. Furthermore, the overall distances between
instruments match well the distances based on perceptual
ratings (Figure 2). This similarity is particularly striking
for the L2 regularization (c), which provides the lowest
overall differences to our combined timbre space. This
might come from the fact that MDS spaces have an Eu-
clidean metric topology. However, this might also indi-
cate an effect of over-regularization, which might impact
generalization. For all regularized latent spaces, the instru-
mental distributions are shuffled around the space in order
to comply with the reconstruction objective. However, the
pairwise distances reflecting perceptual relations are well
matched as indicated by their respective L2 differences to
the timbre space. Finally, by looking at the reconstructions
of the NSGT distributions from the test set, we can see that
enforcing the perceptual topology to the latent spaces does
not impact the quality of audio reconstruction (this evalu-
ation is quantified in Section 5.3). However, we note an
occasional addition of low-amplitude noise, which might
indicate that the model focuses on optimizing the partials
rather than the low-amplitude tail of the distribution.

5.2 Discriminative capabilities

We evaluate the discriminative capabilities of the latent
spaces through a classification task. We use a very low-
capacity classifier composed of a single-layer network of
512 ReLU units with batch normalization and softmax re-
gression. The low-capacity classifier ensures that the latent
space needs to be well organized to obtain a good accu-
racy. In order to evaluate the impact of our proposal, we
also compare these results to a simple PCA with softmax
regression and an Auto-Encoder (AE) with the same ca-
pacity as the VAE. Results are presented in Table 1.

We can see that all models perform an excellent classifi-

Method Family Instrument Pitch Dynam.
PCA 0.790 0.697 0.167 0.527
AE 0.973 0.957 0.936 0.597

VAE 0.978 0.993 0.963 0.941
Prior 0.975 0.991 0.993 0.936

Euclidean 0.972 0.990 0.990 0.943
Gaussian 0.982 0.991 0.989 0.948

Table 1. Discriminative capabilities in classifying family,
instrument, pitch and dynamics of the test set.

Method log p(x) ‖x− x̃‖2

PCA - 2.2570
AE -1.2008 1.6223

VAE -2.3443 0.1593
Prior -2.7143 0.1883

Euclidean 17.8960 0.1223
Gaussian 0.2894 0.1749

Table 2. Generative capabilities evaluated on the log like-
lihood and reconstruction error over the test set.

cation of instrumental properties. However, a very interest-
ing observation comes from the vanilla VAE providing the
best accuracy on instrument classification, even though we
regularized other models with distances highly relevant to
these categories. This might underline the fact that percep-
tual information could blur discrimination of highly simi-
lar instruments (such as violin and violoncello). Interest-
ingly, the symmetric results on pitch and dynamics cate-
gories might indicate that regularized model are pushed to
focus on timbre properties. Therefore, they need to more
clearly separate the variations coming from pitch and loud-
ness to understand the variability of timbre.

5.3 Generative capabilities

We quantify generative capabilities by evaluating recon-
structions from the latent space, through the log likelihood
and mean difference between original and reconstructed
audio on the test set. The results are presented in Table 2.
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Figure 4. (Top) We encode instruments that were not part
of timbre studies to show the out-of-domain capabilities of
latent spaces. (Bottom) Topology of descriptors. We define
4 projection planes equally spaced across the x axis. We
sample points at these positions on a 50x50 grid and re-
construct their audio distribution to compute their spectral
centroid, flatness and bandwidth.

Overall, the regularizations do not impact the recon-
struction quality of the model. Furthermore, we can now
sample directly from the spaces to obtain novel sounds that
remain perceptually relevant, which allows us to turn our
spaces into generative timbre synthesizers. However, as
previously hypothesized, the L2 regularization seems to
have a too strong effect on the latent space, disrupting the
generalization of the model. We provide generated audio
clips representing paths between different instruments in
the latent space on the supporting repository for subjective
evaluation of the latent space audio synthesis.

5.4 Perceptual inference

The encoder of our perceptually-regularized spaces is able
to analyze new instruments that were not part of the origi-
nal timbre studies. Hence, we could hope that it is able to
predict perceptual relationships between new instruments,
to feed further timbre studies. To evaluate this, we ex-
tracted instruments outside of our perceptual set (Contra-
bass, Guitar, Harp, Piccolo, Viola) and encode these sam-
ples in the latent space to study the out-of-domain general-
ization capabilities of our model. Results are presented in

Figure 4 (Top, only the centroid of distributions are shown
for clarity). Here, the Piccolo and Viola seem to group
in a coherent way with their families. However, the Gui-
tar and Harp do not provide such straightforward relation-
ships. Therefore, perceptual inference from these spaces
would require more extensive perception experiments.

5.5 The topology of audio descriptors

We analyze the behavior of signal descriptors across the
latent space in order to study their topology. As the space
is continuous, we do so by sampling uniformly the PCA
space and then using the decoder to generate all audio sam-
ples on this grid. Then, we compute the audio descriptors
of these samples. In order to provide a visualization here,
we select equally-distant planes across the x dimension (at
positions {-.75, -.25, .25, .75}) in Figure 4 for the spec-
tral flatness, centroid and bandwidth. Videos of continu-
ous traversals of the latent space for different descriptors
are available on the supporting repository.

Audio descriptors seem to be organized in a non-linear
way across our spaces. However, they still exhibit both
locally smooth evolution and an overall logical organiza-
tion. This shows that our model is able to organize audio
variations. A very interesting observation comes from the
topology of the centroid. Indeed, all perceptual studies un-
derline its linear correlation to timbre perception, which is
partly confirmed by our model (see Figure 4). This con-
firms the perceptual relevance of these latent spaces. How-
ever, this also shows that the relation between centroid and
timbre perception might not be entirely linear.

6. CONCLUSION

We have shown that VAEs can learn a latent space al-
lowing for high-level audio analysis and synthesis directly
from these spaces. We proposed different methods for reg-
ularizing these spaces to follow the metric properties of
timbre spaces. These regularized models provide a con-
trol space from which the generation of perceptually rel-
evant audio content is straightforward. By analyzing the
behavior of audio descriptors across the latent space, we
have shown that, while following a non-linear evolution,
they still exhibit some locally smooth properties. Future
works on these spaces include perceptual experiments to
confirm their perceptual topology and also to thrive on the
smoothness of audio descriptors to develop a descriptor-
based synthesizer.
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