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ABSTRACT

The expression of emotion is an inherent aspect in singing,
especially in operatic voice. Yet, adverse acoustic condi-
tions, as, e. g., a performance in open-air, or a noisy analog
recording, may affect its perception. State-of-the art meth-
ods for emotional speech evaluation have been applied to
operatic voice, such as perception experiments, acoustic
analyses, and machine learning techniques. Still, the extent
to which adverse acoustic conditions may impair listen-
ers’ and machines’ identification of emotion in vocal cues
has only been investigated in the realm of speech. For our
study, 132 listeners evaluated 390 nonsense operatic sung
instances of five basic emotions, affected by three noises
(brown, pink, and white), each at four Signal-to-Noise Ra-
tios (-1 dB, -0.5 dB, +1 dB, and +3 dB); the performance of
state-of-the-art automatic recognition methods was evalu-
ated as well. Our findings show that the three noises af-
fect similarly female and male singers and that listeners’
gender did not play a role. Human perception and auto-
matic classification display similar confusion and recog-
nition patterns: sadness is identified best, fear worst; low
aroused emotions display higher confusion.

1. INTRODUCTION

Singing is a channel to communicate emotion that goes be-
yond culture or time, as shown by a variety of common mu-
sical representations across the world over centuries: as,
e. g., lullabies [39] (typical expression of parental love) or
spiritual chant [20] (typical expression of mystic feelings).
In western music, the emotional expression in singing
voice is inexorably linked to the Italian Opera which has
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had, from the XVIII century (through the development of
the belcanto [38]) till the XIX century (with the advent of
the Melodramma Verdiano [38]) a focus on the dramatic–
emotional interpretation of the opera’s characters [10].

The Opera was born in Italy at the beginning of the
XVII century as an ‘entertainment’ [12]. Even though
Opera is no longer the most common leisure activity,
its cultural importance is still shown by thousands of
‘opera performances’ made every year—6,795 only in
Germany for the 2015 / 2016 season 1 ; and by thousands
of ‘opera recordings’ available in multi-media libraries—
21,054 items only in the Istituto Centrale per i Beni
Sonori ed Audovisivi (The National Italian Audiovisual In-
stitute 2 ). Yet, opera may face ‘real-world’ acoustic degra-
dation, e. g., from open-air performances [3] or from ana-
log recordings [22]. Indeed, improving the acoustics of an
opera house is a central topic of sound engineering [2], as
well as the application of digital signal processing solu-
tions to the restoration of old recordings [11].

Even though emotion in opera singing has been stud-
ied from the perceptual [34], acoustic [32], and automatic
recognition [7] point of view, it has not been evaluated so
far up to which extent restricted acoustic quality affects
the perception and classification of emotion in singing.
In this regard, we present a perceptual study (based on a
forced-choice categorical [6] and dimensional [28] test),
performed by 132 Italian listeners, who evaluated 390 non-
sense instances, sung by 6 professional opera singers (3
female), in 5 emotional states (hot anger, elated happi-
ness, depressive sadness, panicked fear, and worried fear),
subsequently masked by three noises (white, pink, and
brown) at 4 signal-to-noise ratios (-1 dB, -0.5 dB, +1 dB,
and +3 dB). The performance of state-of-the-art emotion
recognition methods based on a Support Vector Machine
classifier and ComParE features [36] is evaluated as well.
In Section 2, related work is described; Sections 3 and 4
evaluate the database and the listening test; Section 5 dis-
cusses the results for the machine learning approach; fi-
nally, Section 6 outlines conclusions and future work.

1 http://operabase.com/top.cgi?lang
2 http://opac2.icbsa.it/vufind/
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Ne kal i bam so ud mo len- - -

Figure 1: The nonsense utterance ‘Ne kal ibam soud molen’ sung in an ascending scale for each emotional state.

Figure 2: Correspondence between emotion categories and
the bi-dimensional model of the five ‘real’ labels, i. e., hot
anger (HOTan), elated happiness (ELAha), depressive sadness
(DEPsa), panicked fear (PANfe), and worried fear (WORfe),
in bold; and the three dimensional ‘distractors’, i. e., cold anger
(COLan), pleasured happiness (PLEha), and desperate sadness
(DESsa), considered in the perception test.

2. RELATED WORK

Even though emotions are typically expressed through the
voice, emotional singing has received little attention com-
pared to emotional speech [29]. Yet, the similarity between
both channels (i. e., speech and singing [19, 33]) has re-
cently encouraged researchers to analyse the expression
and perception of sung emotional content [4]. Methods
typically used in emotional speech research [1] have also
been applied to singing—with special attention to the op-
eratic voice—such as acoustic evaluation [23, 27, 32, 37]
or perception assessment [15, 16, 34]. Furthermore, in
the realm of affective computing, state-of-the-art machine
learning techniques, typically used in audio signal process-
ing for speech emotion recognition, have also been applied
to the study of the a cappella singing voice [7, 40].

In the assessment of emotional speech, it has been
shown that listeners’ perception, acoustic feature analy-
sis, and machine learning techniques, are affected by noisy
backgrounds [25,35], which are typical of ‘real-world’ en-
vironments and recordings. Yet, although singing mostly
takes place in adverse acoustic conditions, the extent to
which these may impair a listener’s ability to perceive its
inherent emotion, and how the robustness of automatic sys-
tems for emotion recognition in singing might be impaired,
has not been, to the best of our knowledge, assessed so far.

3. METHODOLOGY

3.1 An Emotional Corpus of a Cappella Opera Singing

We took into account a selection of sentences from a
dataset of the emotional singing voice [7,33] in which pro-
fessional opera singers performed a variety of sentences
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Figure 3: A comparison of the spectral distribution between 0–
2 kHz and -80–0 dB, for the brown, pink, white, and real noise.

in different emotional states correlated to several levels of
arousal (intensity) and valence (hedonistic value). Since
linguistic meaning may influence listener perception of the
emotional content, in order to avoid such a bias [31], the
nonsense sentence ne kal ibam soud molen! has been con-
sidered. For a gender-balanced distribution of voice types,
six singers have been selected: three females (two sopra-
nos and one mezzosoprano) and three male (two tenors and
one countertenor), who produced five times the nonsense
sentence with an ascending scale (cf. Figure 1), each time
expressing a different emotional state.

Following previous research on the perception of emo-
tion in operatic voice [16], four basic emotions have been
considered: anger, with high arousal (intensity), i. e., hot
anger; happiness, high aroused, i. e., elated happiness; sad-
ness, low aroused, i. e., depressive sadness; and fear, with
both high arousal, i. e., panicked fear, and low arousal, i. e.,
worried fear (cf. Figure 2). Thus, considering one non-
sense sentence, expressed in five emotional states by six
singers, 30 ‘clean’ stimuli in total have been employed.

3.2 Manipulation Techniques

The perception of emotion in speech is especially compro-
mised by pink, and to a lesser extent by white and brown
noise [25]. In Figure 3, the spectrum of a ‘real’ back-
ground noise, digitised from a ‘no-musical fragment’ of an
LP recording 3 , is compared with brown, pink, and white
noise. The ‘real’ noise displays higher energy in the lowest
frequencies, presenting a negative slope of approximately
6 dB per octave up to 1 kHz, a constant area from 1 kHz
to 3 kHz, and a fall of energy of approximately 10 dB per
octave above 3 kHz. Its acoustic characteristics makes it
most similar to brown noise, which presents a negative

3 Recording of the aria Vissi d’amore (Puccini’s Tosca), interpreted by
Giannina Arangi and produced in 1932 by Columbia records.
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Figure 4: Mean accuracy in % of the ‘real’ emotions (cf. caption Figure 2) perceived by female (F) and male (M) listeners; in clean (cl)
conditions, background noises (brown, pink, and white), and 4 SNR (-1 dB, -0.5 dB, +1 dB, and +3 dB); sung by females and males.

slope of around 6 dB per octave (1/f2 noise); slightly sim-
ilar to pink, with a negative slope of approximately 3 dB
per octave (1/f noise); and dissimilar to white, whose flat
spectrum presents all the frequencies at the same level.
Note that the given comparison aims at exemplifying po-
tential similarities between ‘real’ and ‘artificially gener-
ated’ noise; noise from different recordings may display
higher similarity with pink, white, or other noise types.

We evaluated listeners’ perception of emotion in ad-
verse acoustic conditions by applying four Signal-to-Noise
Ratio (SNR) levels (-1 dB, -0.5 dB, +1 dB, +3 dB) and three
noises (brown, pink, white) to the ‘clean’ samples. The
noises, normalized to -1 dB, have been artificially gener-
ated and mixed (at the specified SNR value) in Matlab
R2014a [21]. Given 6 singers, 1 sentence sung in 5 emo-
tional states, 3 noises, and 4 applied SNR levels yields
6 x 1 x 5 x 3 x 4 = 360 ‘noisy’ samples plus 30 ‘clean’ sam-
ples = 390 stimuli in total.

4. PERCEPTION STUDY

4.1 Emotion Measurement

The two prominent models considered to evaluate listen-
ers’ perception of emotional speech, i. e., the categorical
[6], which identifies each emotional state with a specific
category, and the dimensional [28], which identifies each
emotional state within a continuous hyper-space charac-
terised by dimensions—commonly arousal (from low to
high) and valence (from negative to positive)—have al-
ready been applied to the perceptual evaluation of emotion
in singing [16,26]. Yet, which of them would be more suit-
able to evaluate listeners’ perception of emotion, is still an
open question in both the musical domain [5] and speech
research [18]. Both models have been taken into account
for the perception test, i. e., each of the 4 considered basic
emotions—anger, happiness, sadness, and fear (cf. Sec-
tion 3.1)—has been defined in the bi-dimensional space,
by having a level of arousal and valence (cf. Figure 2).

Five of these eight emotional categories (hot anger,
elated happiness, depressive sadness, panicked fear, and
worried fear), are ‘real’ emotions effectively expressed by
the singers in the dataset. The other three (cold anger, plea-
sured happiness, and desperate sadness), so-called ‘dis-
tractor labels’ [24]—emotion categories not displayed in
the evaluated data, have the purpose to ‘distract’ the listen-
ers by minimising the chances of performing ‘discrimina-
tion’ rather than ‘recognition’ [30]. Furthermore, disgust
and surprise (the remaining two basic emotions—in addi-
tion to anger, fear, sadness, and happiness—amongst those

known as ‘big six’ [6]), have also been considered as ‘dis-
tractors’, without indicating a specific dimensional level;
we thus present a balanced set of perceptual choices: five
‘real’ emotions and five ‘distractors’.

4.2 Listening test setup

In total, 132 Italian listeners (55 f, 77 m, mean age 20.7
years, standard deviation 2.5 years) took part in the per-
ception study. The participants were all students of the
engineering faculty of the ‘Tor Vergata’ university (Rome)
and received credits for their participation. To avoid fa-
tigue, the 390 stimulus were similarly distributed into four
sessions, each designed to last not longer than 30 minutes.
Out of the 132 listeners, 101 had no musical instruction,
27 were self-taught in piano or guitar, 4 had studied in the
conservatory—piano (2), flute, and accordion. Their musi-
cal interest was mostly in pop (65 listener), rock (45 listen-
ers), and hip-hop (22 listeners); other genres as, e. g., Ital-
ian music, heavy-metal, or classic were underrepresented
(less than 10 listeners). Since none of them had stud-
ied singing or demonstrated interest in opera, we consider
them as a unique group of non-experts.

The test was designed as a forced-choice task; the ten
emotion categories were presented and the participants
could choose one out of them after listening to each stimu-
lus (an initial training was provided). The test was hosted
on a browser based interface (accessible from any com-
puter) provided through the gamified crowd-sourcing plat-
form iHEARu-PLAY [14]. To ensure a consistent listening
environment, the participants were instructed to use ear-
phones. Although the listeners had the possibility of lis-
tening to each stimulus indefinitely, they were encouraged
to answer spontaneously to the randomized samples.

4.3 Results and discussion

Emotions were identified best in clean conditions; female
listeners were slightly more accurate than male; emotions
in male voices were somewhat better identified than in fe-
male voices (cf. Figure 4). Listeners’ and singers’ gender-
related differences turned out to be not significant. In the
former case, the biggest distance, i. e., female and male
listeners evaluating male voices in pink noise at -1 SNR
(21.6% vs 17.6%), corresponds to a p value in Pearson Chi-
square of = .47 (way above the conventional threshold for
significance of p < .05). In the latter case, the biggest dis-
tance, i. e., female and male voices perceived by male lis-
teners in clean conditions (17.2 % vs 22.2 %) did not yield
a significant difference either (p = .37). Thus, the further
evaluations will not consider gender.
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%
Real emotions Distractor labels

#
HOTan ELAha DEPsa PANfe WORfe COLan PLEha DESsa DIS SUR

HOTan 26.6 14.7 05.5 03.2 05.2 26.4 9.2 02.8 01.7 04.5 6
ELAha 13.1 18.4 07.6 04.4 05.9 19.7 18.3 04.1 03.3 05.2 6
DEPsa 01.0 03.6 42.0 03.6 05.7 07.0 12.3 21.4 01.2 02.2 6
PANfe 09.8 06.1 22.8 06.8 06.6 19.7 12.0 09.6 02.3 04.3 6

WORfe 12.6 08.8 14.4 08.2 08.5 21.2 14.2 05.1 02.2 04.9 6

total 63.1 51.7 92.3 26.1 31.9 93.9 66.4 43.0 10.7 21.1 30

Table 1: Listeners’ perception (in %) of the clean instances (#), considering ‘real’ emotions and ‘distractors’ (cf. Figure 2, disgust—DIS,
and surprise—SUR). Each row gives the ‘reference’, darker cells indicate higher % ; listeners’ and singers’ gender is not considered.

% HOTan ELAha DEPsa PANfe WORfe mean

cl 26.6 18.4 42.0 06.8 08.5 20.5
br 13.7 10.9 42.9 04.8 06.5 15.8
pi 12.9 09.5 45.1 05.2 11.5 17.0
wh 10.0 09.1 49.7 04.8 08.5 16.4

Table 2: Perception accuracy (in %) of HOTan, ELAha, DEPsa,
PANfe, and WORfe (cf. Figure 2), in clean (cl) and noisy back-
ground: brown (br), pink (pi), white (wh) at -1 dB SNR. Mean
accuracy is given; each row gives results for 30 instances.

The results for clean conditions show that the emo-
tional state most accurately perceived is DEPsa (42.0%),
followed by HOTan (26.6%), and ELAha (18.4%); worse
recognised were WORfe (08.5%) and PANfe (06.8%).
HOTan was mainly confused with COLan, ELAha with
PLEha, and DESsa with DEPsa (cf. Table 1), suggest-
ing that listeners discriminate better between two different
emotions than between two arousal levels of the same emo-
tion. The ‘distractors’ DIS and SUR have been rarely cho-
sen (less than 5.5 %). Confusion between different emo-
tions within the same arousal level took mostly place be-
tween HOTan vs ELAha (high arousal) and WORfe vs
COLan (low arousal); this can be explained by the acous-
tic similarities between them. In Figure 5, the Chroma 4

representation of emotional singing performed by a female
singer (soprano) displays that HOTan and DEPsa are ex-
pressed differently. HOTan, as shown in acted speech [13],
is expressed through articulated prosody, acoustically char-
acterised by a strong decay in amplitude and lower slope
declinations, which is displayed by a richer spectrum on
partials with less differences between the energy of low
and high frequencies. DEPsa, on the contrary, is expressed
through sustained amplitude for each note, which concen-
trates more energy in F0 and less in higher harmonics.
ELAha presents a spectrum and articulation at mid point
between the previous ones.

As expected (apart from a rare exceptions in the percep-
tion of female voices at −0.5 dB SNR in brown noise), lis-
teners’ accuracy decreases with the increment of noise (cf.
Figure 4), i. e., higher SNR (−1 dB and −0.5 dB) yielded
lower accuracy. By evaluating the perception of emo-
tion in clean and −1 dB SNR conditions, (cf. Table 2),
HOTan and ELAha were affected most by noise, DEPsa

less, WORfe and PANfe were perceived similarly to clean
background. The three noises affected perception in a
similar way: brown slightly more (15.8 % mean accu-

4 Chroma features have been extracted by OPENSMILE [8].

% HOTan ELAha DEPsa PANfe WORfe COLan

cl 63.1 51.7 92.3 26.1 31.9 93.9
br 36.3 41.4 112.9 26.3 32.4 109.1
pi 44.1 37.9 138.1 26.7 27.7 107.2
wh 36.3 34.8 125.1 25.6 28.8 117.7

Table 3: Sum of columns (in %) ‘perceived as’ for the ‘real’ emo-
tions: HOTan, ELAha, DEPsa, PANfe, WORfe; the ‘distractor’
COLan (cf. Figure 2), in clean (cl) and -1 dB SNR background:
brown (br), pink (pi), white (wh); each row encodes 30 instances.

racy), pink less (17.0 % mean accuracy). Yet, the higher
level of accuracy in pink and white noises is due to an
improvement—caused by an increment in the confusion
towards low aroused emotions—in the accuracy of DEPsa,
rather than to a lower detriment in the overall accuracy.
This phenomenon relates to an acoustic ‘flattening’ by the
noise of the characteristics typical of each emotion, caus-
ing perception as sustained, with lower energy, and atten-
uated articulation, i. e., similarly to low aroused emotions.
Indeed, the chromogram for HOTan, ELAha, and DEPsa,
masked by pink noise at −1 dB (cf. Figure 6), displays
comparable acoustic representation for the three emotions.

To evaluate such phenomena, for each confusion
matrix—obtained by the perception in clean and −1 dB
SNR conditions—the sum of the columns has been com-
puted, by that counting for each emotion all the responses
‘identified as’ (cf. ‘total’ in Table 1). Confirming previous
findings [25], the confusion in background noise mostly in-
creases for the low aroused emotions DEPsa and COLan,
and decreases for the high aroused HOTan and ELAha (cf.
Table 3). No meaningful differences are displayed for the
other emotions across conditions.

5. AUTOMATIC RECOGNITION

5.1 Methods

We employed state-of-the-art methods for emotion recog-
nition of vocal cues by applying a Support Vector Machine
(SVM) classifier with linear kernel, from the open–source
toolkit LIBLINEAR [9], and the ComParE 2013 challenge
features set [36], extracted with OPENSMILE [8]. Since
our goal is to evaluate how background noises may affect
the classification performance in general, only state-of-the-
art methods for automatic recognition of emotion in the
operatic voice [7] have been taken into account.

For speaker independence, we split the 390 instances
into three sets (A, B, and C), considering for each 130 in-
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Figure 5: Chroma representation of the instances expressing: Hotan, ELAha, and DEPsa (from left to right); sung by one of the soprano.
The y axis gives the C natural scale; the x axis the time in miliseconds. Dark blue indicates the lower level of energy, red the higher.

Hot anger

Time (ms)
50 100 150 200 250

B

A

G

F
E

D

C

Elated happiness

Time (ms)
50 100 150 200 250

B

A

G

F
E

D

C

Depressive sadness

Time (ms)
200 400 600

B

A

G

F
E

D

C

Figure 6: Chroma representation of the instances given in Figure 5 masked by pink noise at −1 dB SNR.

stances sung by two different singers (one female and one
male), and performing the experiments in two phases—
development and test. For the development phase we con-
sidered one set as training (e. g., A), and another as test
(e. g., B); 30 levels of complexity (from 230 to 20) have
been tested to optimise the SVM performance. In the test
phase, we merged the sets A and B for training and consid-
ered the set C as test; the complexity which achieved best
results in the development phase was taken into account as
optimisation parameter for the SVM. This procedure was
carried out with the six possible permutations between the
three sets, and the results were averaged.

We performed binary classification on five classes, i. e.,
each class was recognised against the other four. In the
training phase, the minority class was upsampled to match
the sample size of the remaining classes together; for each
noise, all the SNR were considered together. We em-
ployed the whole ComParE 2013 features set [36], en-
compassing 6374 acoustic features in total: 64 low-level
descriptors—LLD, and several functionals [7], in four sub-
sets: mel-frequency cepstral coefficients—mfcc (1,400
features), spectrum (4,300), prosody (183), and voice qual-
ity (390).

5.2 Results and discussion

The classification of five classes (cf. Table 4) mirrors
the perception findings (cf. Table 2) for all the feature
sets: DEP being classified best, HOT and ELA in be-
tween, and PAN and WOR worse. The mfcc sub-set per-
forms best, showing the highest Unweighed Average Re-
call (UAR), i. e., the mean average of the recall per class
over the six permutations. In order to visualise these re-

% HOT ELA DEP PAN WOR UAR

ComParE 26.3 28.2 77.6 07.0 18.6 31.5
mfcc 34.6 30.1 71.8 07.7 26.3 34.1
spec 26.9 25.0 82.0 03.8 12.2 30.0

prosody 17.3 22.4 48.1 08.3 21.1 23.5
vq 34.6 27.6 53.2 11.5 14.7 28.3

Table 4: Test classification accuracy and Unweighed Average
Recall (UAR) in % for the ‘real’ emotions (HOT, ELA, DEP,
PAN, WOR, cf. Figure 2), considering the four conditions—clean
and the three noises—together, for each feature set: ComParE,
mfcc, spectrum (spec), prosody, and voice quality (vq).

% ComParE mfcc spec prosody vq mean

cl 35.0 40.0 36.6 23.3 25.0 32.0
br 31.6 35.4 30.8 23.7 28.7 30.0
pi 32.0 36.2 28.3 22.9 25.4 29.0
wh 30.0 29.1 29.1 23.7 31.6 28.7

Table 5: UAR for test in % for each feature set (cf. caption of
Table 4), in each condition: clean (cl), brown (br), pink (pi), white
(wh). In noisy background the 4 SNR are considered together.

sults, in Figure 7, a 2-dimensional Non-Metrical Multi-
Dimensional Scaling (NMDS, [17]) solution is given. It
shows a non-metrical visual representation of the optimal
distances between the evaluated categories. DEP, since
best recognised—thus classified as different—is more dis-
tant to the other classes in all the emotional constellations.

The feature set with the best performance (mfcc, cf. Ta-
ble 4) displays an arousal related pattern, the high aroused
emotions (HOT, ELA, PAN), clustered together, the low
aroused (WOR, DEP) more distant. This may relate to the
level of energy: higher in the former, lower in the latter
(cf. Figure 5). The decline in UAR goes together with
the condensation of the emotions in the 2-dim space, as
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Figure 7: 2-dim NMDS solution for the five feature sets in the classification of the five ‘real’ emotions, considering the 390 instances
(cf. caption of Table 4). Kruskal’s stress is given as a measure of fit for 2-dim and 1-dim solution respectively: ComParE (6.3e-07,
4.0e-05); mfcc (3.4e-07, 0.1); spectrum (1.3e-17, 7.5e-16), prosody (6.9e-07, 9.2e-07); voice quality (1.3e-16, 4.8e-05).

Figure 8: 2-dim NMDS solution for listeners’ perception (in clean condition) and classification (in clean and noisy conditions) with mfcc
features, of the five ‘real’ emotions. Kruskal’s stress is given for 2-dim and 1-dim solution respectively: Perception (4.3e-17, 6.6e-07);
Clean (1.2e-16, 7.3e-07); Brown (1.3e-16, 0.02), Pink (3.9e-07, 1.3e-05); White (6.9e-07, 3.0e-04).
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Figure 9: UAR and std in % for binary classification, i. e., each
emotion against the other four, in the four conditions (cf. caption
of Figure 8), for the mfcc sub-set.

prominently shown for the voice quality sub-set (cf. Fig-
ure 7). As for listeners’ perception (cf. Table 2), for mfcc,
ComParE, and to some extent for spectral features, high-
est accuracy was achieved in clean condition, medium in
pink and brown, lower in white (cf. Table 5). Prosodic and
voice quality features performed worst, which relates to
both the considered musical instances and to the operatic
technique. On the one hand, the sung melodic contour is
the same for all utterances and emotions; thus, there are
no degrees of freedom for pitch leftover for the marking
of emotions. On the other hand, opera singing is charac-
terised by the ‘projection’ of the voice—a high control of
articulation (and by that, mfcc configurations), and a weak
use of different voice qualities when expressing emotions,
in contrast, for instance, to modern actors or pop singers.

In Figure 8, an NMDS visualisation for perception (in
clean condition) and mfcc classification (in the different
backgrounds) is given. The confusion in the perceptual
constellation relates mainly to the low accuracies achieved
in the listening test, which is given mostly by the use of
‘distractors’. As shown in Table 5, classification in clean
background yields the highest UAR, which is visually mir-
rored by the arousal-related pattern previously described,
i. e., high aroused emotions clustered together, low aroused

distant (DEP more, WOR less); this is more or less pre-
served for brown and pink noise but not for white noise
with lowest UAR, cf. Table 5.

The binary classification (cf. Figure 9) confirms again
the perceptual findings (cf. Table 2): DEP best recognised,
HOT and ELA at a medium level, PAN worse. WOR is
better classified than perceived, which relates to the spread
of the listeners’ responses motivated by the ‘distractor’
COLan. Indeed, WOR—having the same arousal—was
mainly misclassified by the listeners as COLan, thus de-
creasing the perception accuracy of the former. White
noise seems to affect binary classification more which
might suggest that higher frequencies (more masked in
white noise) could be more relevant for the identification
of emotion in singing; lower frequencies (more masked in
pink and brown noises), since related to pitch—thus to the
melodic contour, which is the same for all the samples—
might be less relevant for the emotional understanding in
this specific study but not in general.

6. CONCLUSIONS

The present study shows that brown, pink, and white
noises affect similarly the perception of emotion in op-
eratic singing: the lower the SNR, the lower the percep-
tion. Gender seems not be an influential factor, neither
for singers nor for listeners. In general, perception and
classification shows analogous emotional constellations re-
gardless the background, sadness being identified best, fear
worst. The use of ‘distractors’ influences listeners’ percep-
tion, affecting even more the accuracy of fear, an emotion
which seems not to have a typical expression in singing;
thus it is worse identified and easily confused. Voice qual-
ity features perform worst, mfcc best. In the former, this
relates to the voice ‘projection’ inherent to opera (which
minimise the differences between emotions), in the latter,
to the relevance of energy per band to discriminate between
sung emotions. Listeners’ low accuracy suggests that iden-
tifying emotion in opera singing may be challenging for
non trained subjects; thus, musically trained listeners will
be considered in future investigations.
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