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ABSTRACT

Identification of instruments in polyphonic recordings is a
challenging, but fundamental problem in music informa-
tion retrieval. While there has been significant progress in
developing predictive models for this and related classifi-
cation tasks, we as a community lack a common data-set
which is large, freely available, diverse, and representative
of naturally occurring recordings. This limits our ability to
measure the efficacy of computational models.

This article describes the construction of a new, open
data-set for multi-instrument recognition. The dataset con-
tains 20,000 examples of Creative Commons-licensed mu-
sic available on the Free Music Archive. Each example is a
10-second excerpt which has been partially labeled for the
presence or absence of 20 instrument classes by annotators
on a crowd-sourcing platform. We describe in detail how
the instrument taxonomy was constructed, how the data-
set was sampled and annotated, and compare its character-
istics to similar, previous data-sets. Finally, we present ex-
perimental results and baseline model performance to mo-
tivate future work.

1. INTRODUCTION

Music information retrieval (MIR) applications often de-
pend on statistical models and machine learning algorithms
to relate audio content to semantically meaningful repre-
sentations. The development and evaluation of these meth-
ods, in turn, depends on access to data, typically audio
recordings which have been annotated for a particular task
such as chord recognition or tag prediction. Ideally, the
data we use to develop and evaluate models should be
large, diverse, and open access, so that we as researchers
and engineers can diagnose failure modes and propose im-
provements. However, because the vast majority of music
is subject to copyright, this has historically been difficult
to achieve. This has resulted in a proliferation of de facto
standard data-sets which are small, biased, and not freely
available, which ultimately impedes scientific progress.
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To address this problem, McFee et al. [15] proposed
an iterative evaluation framework for developing open ac-
cess data-sets for MIR, with a specific focus on instrument
recognition. While this proposal was apparently met with
enthusiasm from the community, little progress has been
made in the intervening time toward enacting the proposal.
We hypothesize that this was primarily due to two factors:
a lack of a conveniently accessible audio data, and the ex-
pense of creating the initial development set. Recently, two
complementary data-sets have been published, which we
combine here to resolve both of these issues: the Free Mu-
sic Archive data-set [8], and AudioSet [11]. The result is a
diverse, open access collection of 20,000 audio clips anno-
tated for the presence of 20 distinct instrument categories,
which we denote as OpenMIC-2018.

1.1 Our contributions

Our primary technical contribution is a new, open dataset
for training and evaluating instrument recognition algo-
rithms. This article describes in detail how the dataset was
constructed by using a combination of model transfer from
previous datasets and crowd-sourced annotation. Our goals
in documenting the data construction process are two-fold.
First, it provides transparency around the various decisions
and compromises made in this specific dataset. Second, we
describe technical issues and general solutions which may
be of interest to future developers of music datasets.

1.2 Related work

Instrument recognition, either monophonic or polyphonic,
is a long-standing problem in MIR, and many datasets for
evaluating methods have been developed over the years.
Table 1 lists some of the commonly used datasets, along
with various descriptive attributes. Of specific interest
are the size of the collections, the number of instrument
classes, the duration of each example, the diversity of the
collection (e.g., genre or style), whether the examples are
polyphonic, the number of instrument labels per example,
and whether the data is open access.

Broadly speaking, existing datasets can be broken into
two categories, according to whether samples contain
notes played by isolated instruments (RWC [12], Good-
sounds [1], or NSynth [10]), or recordings of instrument
ensembles. Datasets of isolated instrument recordings are
often easier to produce and annotate at large scale because
long recordings spanning multiple notes can be segmented
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Table 1. A qualitative comparison of different existing datasets for instrument identification.
Collection # Examples # Instruments Duration Diverse Polyphonic Multi-label Open

RWC [12] 3,544 50 scale
Good-sounds [1] 6,548 12 note X
NSynth [10] 305,979 1,006 note X
MedleyDB [3] 122 80 song X X X
MusicNet [19] 330 11 song X X X
IRMAS [4] 6,705 11 3s X X

OpenMIC-2018 20,000 20 10s X X X X

to generate examples with a shared label. However, the
acoustic properties of ensemble recordings differ signifi-
cantly from those of isolated recordings, so models devel-
oped on single-instrument data often do not generalize to
the polyphonic case. Conversely, ensemble recordings are
typically difficult to precisely annotate, which results in
either high-quality collections with a small number of dis-
tinct tracks (MedleyDB [3] or MusicNet [19]), or in col-
lections with more tracks but with only partial annotations
(such as IRMAS [4] with predominant instrument tags for
short excerpts). An ideal dataset would be large, diverse,
strongly annotated (including both positive and negative
examples), and freely available, so that at each instant in
any recording, full information about all active instruments
is available. While existing datasets succeed on some of
these criteria, none achieves all simultaneously.

1.3 The Free Music Archive

The Free Music Archive 1 (FMA) is a web-based repos-
itory of freely available music recordings. Recently, a
snapshot of FMA has been released to the research com-
munity to facilitate content-based music analysis evalua-
tion [8]. The FMA snapshot includes 106,574 tracks by
some 16,341 artists, along with pre-computed features.
Each track is annotated with both coarse (16 categories)
and fine (161 categories) genre tags. Tracks are provided
under a small variety of licenses, with the vast majority
being Creative Commons [7]. This allows practitioners
to archive and redistribute data (with some minor restric-
tions), which is fundamental to the practice of open and
reproducible scientific research.

While previous authors have noted the particular genre
biases present on FMA [8], it nonetheless provides a large
pool of realistic musical content which could be used in re-
search applications. Despite the specific quirks of the FMA
collection, using it as a basis for large-scale MIR evalua-
tion has several benefits. In addition to the obvious benefits
of being open access, it also facilitates data revision and in-
clusion of new contributions from the community at large.
This in turn makes it easier for corrections to be integrated,
and the collection to grow over time and not become stale.

2. CONSTRUCTING OpenMIC-2018

In developing OpenMIC-2018, we took inspiration from
ImageNet [9]. ImageNet was constructed by selecting

1 http://freemusicarchive.org/
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Figure 1. A multi-label instrument detector (Instru-
mentDNN, section 2.2) is trained on AudioSet data. The
model is used to score each 10s clip in FMA by likeli-
hood of each instrument (section 2.3). Clips are sorted
into quantiles for each instrument, then sub-sampled and
annotated by CrowdFlower workers (section 3).

and annotating natural images to represent categories (syn-
onym sets, or synsets) drawn from the WordNet ontol-
ogy [16], with a goal of having at least 500 positive ex-
amples for each category. Candidate images were selected
by querying image search engines for each category term,
and then labels were verified by crowd-sourced annotation.
The label correction and verification step was critical at
the time, due to the poor accuracy of image search engines
when the dataset was constructed in 2009.

We follow a similar strategy here, with a few notable
modifications. Rather than querying the Internet for candi-
date samples, we restrict attention to freely available con-
tent hosted on the Free Music Archive, and specifically
those with explicit Creative Commons licensing. Addi-
tionally, instead of the WordNet ontology, we use the re-
cently published AudioSet concept ontology [11], which
itself derives from WordNet, but is adapted to acoustically
meaningful concepts. Using existing AudioSet data, we
construct a multi-instrument estimator and use this model
to rank the unlabeled FMA data and provide candidates for
annotation. The remainder of this section describes the en-
tire process in detail, which is visualized in Figure 1.

2.1 AudioSet

AudioSet is a recently released concept ontology and
human-annotated dataset derived from YouTube videos,
with the goal of providing a testbed for identifying acoustic
events [11]. The ontology consists of 632 classes, repre-
sented as a lattice-like graph, rather than hierarchical tree
structure, i.e. one low-level class may have two distinct
parents. The annotated dataset consists of at least 100 pos-
itive examples of 485 classes, distributed (non-uniformly)
across nearly 1.8M video clips of 10 seconds (or less)
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drawn from YouTube. Similar in spirit to the work pre-
sented here, AudioSet is motivated by a lack of large-scale
annotated audio data for scientific research purposes.

While the AudioSet ontology includes musical instru-
ments, the audio data does not match our requirements for
an open music instrument sample. The collection is de-
rived from YouTube videos, for which there are no guar-
antees on the legality of licensing, sharing, and archiv-
ing the content. Though abstract features are made avail-
able via a publicly available acoustic model, an inability to
make the source content directly accessible has limited the
value of other large collections, such as the Million Song
Dataset [2]. Furthermore, the content is often quite differ-
ent from musical performances, an important characteristic
at the root of what makes this task both challenging and in-
teresting: many of the positively labeled examples are solo
performances, which makes it difficult to model and evalu-
ate on realistic, highly correlated ensemble performances.

That said, AudioSet serves two important functions in
this project. It is impractical to annotate the entire FMA
collection of more than 100K recordings outright; how-
ever, it is also extremely unlikely that one could draw a
random subsample with sufficient representation across a
number of instruments. The occurrence of musical instru-
ments is heavily biased by popularity, such as voice, gui-
tar, or piano, and this is especially true in the Free Mu-
sic Archive. Here, we leverage AudioSet to build a multi-
instrument estimator that allows us to sub-sample and more
efficiently use annotation resources. For better or worse,
we also leverage the previous work in ontology construc-
tion, while circumventing the important, but difficult, chal-
lenge of selecting which instruments to consider: here, we
are limited to only those with enough signal in AudioSet
on which to build a baseline model.

We manually identify the classes that correspond to mu-
sical instruments, resulting in a set of more than 70 relevant
classes. For the sake of coverage, they are merged into “in-
struments”, e.g. “Acoustic Guitar”, “Electric Guitar”, and
“Tapping (guitar technique)” become guitar, while “Cello”
and “Violin” remain distinct. Note that this class resolu-
tion is intentionally approximate, as the long-term goals
of this project include iteratively refining these concepts
as acoustic models improve. We then filter the 1.8M clips
in AudioSet to those containing these classes. Unsurpris-
ingly, the distribution skews toward instruments common
in Western popular music, such as guitar, violin, or drums,
and we cut this list at 1500 examples. Additionally, we
randomly draw 8000 non-musical examples as negative
instances for building the instrument model described in
section 2.2. In summary, the resulting instrument subset
consists of 206K clips, totalling roughly 2M seconds (570
hours) of annotated content for 23 instruments. 2

2.2 Multi-instrument modeling

AudioSet offers no licensing guarantees on the source con-
tent, and there is no approved mechanism for directly ac-
cessing the audio data. To make the dataset more gener-

2 https://github.com/cosmir/open-mic-data

ally useful, the developers of AudioSet have released both
a pre-trained feature embedding model [13] based on the
VGG architecture for object detection in images [18], 3

and its outputs over the original AudioSet audio signals. 4

This model, referred to as “VGGish”, produces a 128-
dimensional feature vector every 0.96 seconds with an
equal window size, such that adjacent features capture non-
overlapping context. VGGish features are ZCA-whitened
and each coefficient is quantized to 8-bits to reduce the
footprint of the dataset.

Using the sub-sampling process described above, we fil-
tered the AudioSet features down to those clips relevant
for the instrument ontology considered here. The data are
conditionally partitioned by YouTube ID into training, val-
idation, and test splits with a 3 : 1 : 1 ratio. We randomly
generate over 200 unique, fully connected deep network ar-
chitectures and hyper-parameter configurations, spanning
depth (1–8 layers), width (128 to 2048 units, by powers
of 2), the application of dropout and batch normalization,
different optimization algorithms (stochastic gradient de-
scent, RMSProp, and Adam [14]), as well as various pa-
rameters for each operation. All models are trained for 50
epochs of the training data, and the parameter checkpoint
with the highest macro-F1 (class-averaged) score over the
validation data is taken as the best model.

Overall, we find that roughly 15% of the models be-
have with statistical equivalence, achieving a mean macro-
F1 score of 0.514 (σ = 0.0095) and a micro-F1 (item-
averaged) score of 0.656 (σ = 0.0056) on the test partition.
The best configuration is determined to be a 7-layer net-
work, with widths of [1024, 512, 256, 1024, 256, 1024, 23],
batch-normalization on the first four layers, and point-
wise dropout applied to the inputs of the last five
[0.0, 0.0, 0.25, 0.125, 0.25, 0.25, 0.5]. The winning model,
which we refer to as InstrumentDNN, is trained with the
Adam optimizer in Keras for 8 epochs, with a learning rate
of 0.0001 and a β1 of 0.99. For reproducibility, the train-
ing data and trained model are made publicly available in
the source repository.

2.3 FMA clip sampling

The VGGish model is applied to each track in FMA,
and the resulting ZCA features are processed by Instru-
mentDNN to produce time-varying instrument likelihoods.
Full tracks are then divided into candidate clips by per-
forming maximum-likelihood aggregation over 10 second
windows with a 4 second hop size. To account for fram-
ing effects, the maximum likelihood of each instrument is
taken over the middle 8 seconds, centered on the frame.
This produces over 7M clip candidates.

We ultimately want an approximately balanced sample
that has good positive representation of each instrument
class. Therefore the candidate set is sub-sampled by the
following process. First, we consider the median like-

3 https://github.com/tensorflow/models/tree/
master/research/audioset

4 https://research.google.com/audioset/
download.html
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lihood of each class over all candidates, and sort instru-
ments in ascending order, as a proxy for class occurrence
in the FMA. Then, proceeding from least to most likely
instrument class, the clip candidate set is reordered by de-
scending conditional class likelihood. We randomly se-
lected N instances from the 99th percentile rank of that
class, such that no two clips share a source track, i.e. sam-
pled clips are recording-independent. All remaining clip
candidates that also share a common recording with any
sampled are discarded, and the process is repeated for the
next instrument. For K instruments, the sampling process
yields N × K clips from distinct tracks. Initially, we set
N = 1000,K = 23, but manual inspection of the results
revealed three classes that either InstrumentDNN cannot
reliably detect, are poorly represented in FMA, or both:
harp, bagpipes, and harmonica. We removed these classes,
leaving K = 20 instruments and 20K clips.

3. CROWD-SOURCED ANNOTATION

At this stage, roughly 25M seconds of audio have been
sub-sampled to 200K, a 105 reduction, while rebalancing
for instrument occurrence. Strongly labeling a collection
of this size is still cost-prohibitive, and we must be prag-
matic with our annotation efforts. In tackling this chal-
lenge, one can think of annotation as a sparse, binary ma-
trix completion problem where most of the values in the
instrument occurrence matrix will be zero. Therefore an-
notation effort is best allocated by flattening this matrix
into clip-instrument pairs, and prioritizing likely positives.

Framed this way, our most likely positives are iden-
tified by the clip selection process: each instrument has
1K potential positive examples that must be validated by
human annotators. We would also like to obtain a num-
ber of strong negatives as well, and draw 500 instances
per class that fall in the bottom 10th likelihood percentile
from the space of examples contained in OpenMIC-2018.
Instrument-wise percentile thresholds are computed over
the full space of clip candidates. In contrast to positive
sampling, negative samples are drawn working from most
to least likely instruments. This is because the most likely
instrument categories will have the fewest potential strong
negatives. Additionally, random sampling is constrained
to draw no more than three strong negatives per clip, so as
to distribute this information across the collection. Finally,
to capture potential correlations and confusions, all addi-
tional likelihoods in the 99th percentile rank of their re-
spective instrument classes are added to the pool of binary
questions for human annotators. This results in 33,250 po-
tential positive and 10,000 potential negative binary esti-
mates for human validation, which makes up roughly 10%
of all possible clip-instrument judgements.

Having identified the questions worth asking, audio an-
notation presents unique design challenges around how to
best ask these questions of humans. Unlike images, audio
clips cannot be scanned in parallel by humans, and must
be auditioned sequentially. This encourages annotation de-
signs that ask several binary questions about the same ex-
ample. Our first attempt to annotate OpenMIC-2018 took

Figure 2. An example annotation task, showing the Mel-
spectrogram visualization, playback, response field, and li-
censing meta-data.

this approach, but we found that annotators struggled with
the increased burden of simultaneously judging multiple
instrument tags. This resulted in poor agreement, unhappy
annotators, and an increased level of effort and skill to
complete. Our second attempt used 20 separate annota-
tion tasks, one per instrument, and annotators were asked
to determine the presence or absence of a specific instru-
ment across multiple recordings.

Annotation was performed on the CrowdFlower 5 plat-
form (CF). In contrast to Amazon Mechanical Turk, CF
provides quality controls on sets of questions, collectively
called a “job”. A single contributor can provide at most 50
responses (or 10% of the job, whichever is larger), and a
question is finalized when annotators reach a set agreement
level and number of responses.

Additionally, CF makes it easy to include control ques-
tions for which an answer is already known. These are
used to “quiz” contributors before they can perform any
(paid) work on a job, and remove contributors whose accu-
racy drops below a threshold, e.g. 70%. It is important that
control questions use clear, unambiguous examples. While
these can be easily identified for popular classes, it is diffi-
cult in the rare classes, notably mandolin and clarinet. For
these classes, control questions were generated by rank-
ing clips according to the margin between the target instru-
ment’s likelihood and the maximum over other instruments
for that clip, which gives preference toward clips where the
target instrument was both present and prominent.

Each question is a single judgement of an instrument’s
presence or absence for a given audio clip. As shown in
Figure 2, we use a radio button interface for the judge-
ment, provide audio playback in the browser, and addition-
ally display an approximately aligned Mel-spectrogram to
facilitate the task, inspired by previous audio annotation
research [5]. Finally, we are legally obligated to display
track title, artist, and license information, which may pro-
vide coincidental information about a given track.

4. OpenMIC-2018 ANALYSIS

We collected over 230K judgements from more than 2,500
unique contributors across the 20 instrument classes. Fig-
ure 3 summarizes the resulting annotation distributions for

5 http://crowdflower.com
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Figure 3. Statistics of crowd-sourced annotation for each
instrument in OpenMIC-2018.
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Figure 4. Annotator agreement for each instrument.

each instrument. For each instrument class, the number
of confirmed positive and negative clips are plotted sep-
arately. Each class has at least 500 confirmed positives,
and at least 1500 confirmed positive or negative. Although
not every clip is tagged for every instrument, the abun-
dance of strong negative labels facilitates supervised learn-
ing and strong evaluation. Figure 4 summarizes the inter-
annotator agreements for each instrument’s presence or ab-
sence. Some instruments produce more agreement for ab-
sence than presence (accordion, violin), while the reverse
is true for others (synthesizer). Overall, we observed a high
amount of agreement across all instruments.

Figure 5 compares InstrumentDNN’s predicted likeli-
hoods to the annotations for three instrument classes. In-
strumentDNN produces a wide range of likelihood values
on mandolin (fig. 5, left), indicating that the 99th percentile
likelihood is well below the threshold for positive detec-
tion. This is likely due to a combination of model calibra-
tion errors and poor representation in AudioSet. However,
the sampling strategy still produced a large number of val-
idated positive examples. For more common classes, such
as cymbals (fig. 5, center), there is a clearer distinction be-
tween the positive and negative selections. For the most
common classes, such as voice (fig. 5, right), the vast ma-
jority of positive selections are validated by the annotators

as positive, and conversely for the negative selections.
To measure the diversity of the annotated subset, fig. 6

compares the distribution of genres over both the sample
and the background population of FMA. While both distri-
butions exhibit non-uniform genre distributions, the sam-
ple is fairly representative of FMA. The instrument-based
sampling does introduce some systematic bias, increasing
representation of styles with distinctive instrumentation,
such as classical or jazz. This effect can be observed di-
rectly in fig. 7, which shows the number of clips in each
genre that are positively labeled for each instrument. For
example, the majority of organ and piano examples are
tagged as classical, while synthesizer is drawn primarily
from electronic and experimental.

4.1 Experiment: baseline modeling

To estimate the expected performance of standard methods
on OpenMIC-2018, we conducted a set of baseline exper-
iments. We trained independent binary classifiers for each
instrument. We report the accuracy of each of those mod-
els on 100 splits of the data, randomly selecting 500 test
instances, and splitting the resulting training set in 3 folds
for hyper-parameter selection. As input representation, we
use the mean and standard deviation of VGGish features
over the clip’s duration.

We tested several baseline models, and for simplicity
report only the best performing one: a random forest (RF)
classifier. The hyper-parameter search is done on the num-
ber of trees ({10, 100, 1000}) and on the maximum depth
of the tree ({2, 4, 8}). We also report the bias point of
each instrument category, and the performance of Instru-
mentDNN. This last comparison point gives us a measure
of how much information is gained by the crowd-sourced
labels. This experiment is done with the scikit-learn [17],
and the code to reproduce will be made available.

The results are shown in fig. 8. We see an overall gain
in accuracy of more than 10 percent point (pp) compared
to both the bias points and InstrumentDNN. The perfor-
mance difference can partly be explained by the difference
in training distributions between RF and InstrumentDNN,
and because a strong signal can be learned from the dataset.
The RF model performance is also more consistent across
instruments with only a 20 pp difference between the worst
and best instrument accuracy, compared to a 34 pp dif-
ference for InstrumentDNN. The gain compared to In-
strumentDNN is therefore larger on the more difficult in-
struments, such as saxophone, mandolin and ukulele. In
that case the crowd-sourced judgments might provide more
value and help build a robust system.

5. CONCLUSION

OpenMIC-2018 should prove to be useful for developing
and evaluating instrument detection models. We note that
the dataset is not “complete” in that not every clip has been
annotated for the presence or absence of every instrument.
While this is true for every instrument dataset—if one con-
siders instruments outside its vocabulary—it is usually not
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Figure 5. The distribution of the initial model likelihood compared to the crowd-sourced annotations for three instruments.
Each dot represents a clip, the horizontal line indicates the majority vote threshold, and the marginal distributions of model
likelihood and crowd agreement are shown as bar plots. Data have been randomly perturbed for clarity of visualization.
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taken into consideration as part of the dataset design.
More generally, previous datasets have not typically

been designed with a plan for future correction, revi-
sion, and expansion. We are explicitly planning to ex-
pand and revise the dataset over time, either by additional
crowd-sourcing, semi-supervised learning [6], or incre-
mental evaluation [15]. OpenMIC-2018 will be placed un-
der version control, archived, and each revision will re-
ceive a unique document object identifier (DOI) via Zen-
odo. 6

In addition to supporting corrections and expanded cov-
erage, we anticipate expanding the vocabulary beyond the
initial 20 classes, both in breadth of instrument classes, and
in depth to provide refinements of classes, such as alto sax-
ophone and tenor saxophone rather than saxophone. Simi-
larly, future work could re-use much of the framework de-
veloped here to annotate the same collection for a variety
of qualities beyond instrumentation, and facilitate the de-
velopment of integrated multi-task models.
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6 http://about.zenodo.org/
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