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ABSTRACT
State-of-the-art automatic drum transcription (ADT) ap-
proaches utilise deep learning methods reliant on time-
consuming manual annotations and require congruence be-
tween training and testing data. When these conditions
are not held, they often fail to generalise. We propose
a game approach to ADT, termed player vs transcriber
(PvT), in which a player model aims to reduce transcrip-
tion accuracy of a transcriber model by manipulating train-
ing data in two ways. First, existing data may be aug-
mented, allowing the transcriber to be trained using record-
ings with modified timbres. Second, additional individual
recordings from sample libraries are included to generate
rare combinations. We present three versions of the PvT
model: AugExist, which augments pre-existing record-
ings; AugAddExist, which adds additional samples of
drum hits to the AugExist system; and Generate, which
generates training examples exclusively from individual
drum hits from sample libraries. The three versions are
evaluated alongside a state-of-the-art deep learning ADT
system using two evaluation strategies. The results demon-
strate that including the player network improves the ADT
performance and suggests that this is due to improved gen-
eralisability. The results also indicate that although the
Generate model achieves relatively low results, it is a vi-
able choice when annotations are not accessible.

1. INTRODUCTION
Automatic music transcription (AMT) systems generate a
symbolic representation of the instrumentation within an
audio recording. There are multiple educational, analytical
and creative fields that would benefit from fast and accu-
rately produced music notation. Automatic drum transcrip-
tion (ADT) systems form a subset of AMT systems which
produce notation solely focused on drum instrumentation.

1.1 Background
At present, high ADT accuracies have been achieved for
audio files containing either just drums or polyphonic
mixtures [4, 7, 9–11, 18]. Following the comprehensive

c© Carl Southall, Ryan Stables and Jason Hockman. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Carl Southall, Ryan Stables and Jason Hock-
man. “Player Vs Transcriber: A Game Approach To Data Manipulation
For Automatic Drum Transcription”, 19th International Society for Music
Information Retrieval Conference, Paris, France, 2018.

ADT literature review in [22], current state-of-the-art
ADT systems utilise either deep learning (DL) or non-
negative matrix factorisation (NMF). NMF approaches
perform instrument-specific onset detection through an it-
erative simultaneous update of basis and activation func-
tions via factorisation of an input spectrogram. Recent
NMF approaches have introduced specialised update meth-
ods (i.e., fixed, adaptive and semi-adaptive) based on the
expected end-use application of the algorithm [2] or in-
corporated additional basis functions to capture harmonic
content within polyphonic recordings [23]. Alternatively,
DL approaches perform instrument-specific onset detec-
tion through supervised frame-based classification. The
first DL systems to acheive high ADT performance in-
corporated recurrent neural networks [14, 19, 20]. More
recent approaches now include convolutional neural net-
works [21] and soft attention mechanisms [15]. As in
many fields, augmentation of data (i.e., pitch shifting) dur-
ing training has aided performance [12, 20].

1.2 Motivation

Evaluations undertaken in [22] and the MIREX 2017 Drum
Transcription Task 1 highlight that state-of-the-art ADT
accuracies are achieved by supervised DL approaches.
However, success of DL systems is reliant on training
data achieved through a time-consuming manual annota-
tion process [24]. Also, if there is a mismatch between
training and testing data, these systems will fail to gener-
alise [22]. We propose a game approach to ADT influenced
by generative adversarial networks [5], termed player vs
transcriber (PvT). In an attempt to undermine the accuracy
of a transcriber model (i.e., an existing supervised ADT
approach), a player model seeks to exploit poorly defined
areas of the feature space through a manipulation of train-
ing data. This is achieved through learned data manipu-
lation variables in the player network, which are used to
define the manipulation coordinates of the transform. Ad-
ditionally, the player model is able to manipulate the data
depending on its content, where existing methods for aug-
mentation typically rely on a set of global variables [8].

The remainder of this paper is structured as follows:
Section 2 presents the PvT model and Section 3 provides
an overview of the undertaken evaluation. The results and
discussion are presented in Section 4 and the conclusions
and future work are presented in Section 5.

1 http://www.music-ir.org/mirex/wiki/2017:
Drum_Transcription_Results
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Figure 1. Overview of the player vs transcriber (PvT) game approach to automatic drum transcription. The PvT model is
achieved through four stages: feature generation, player model, transcriber model and peak-picking.

2. METHOD

Figure 1 provides an overview of the proposed PvT system,
which is achieved through four stages: Feature generation,
data manipulation by a player, activation function creation
by a transcriber, and framewise classification by peak pick-
ing. At the core of the system is an iterative process of data
manipulation (i.e., data augmentation and sample addition)
and activation function generation between the player and
transcriber. Both models examine the loss functions related
to the activation functions created by the transcriber. Here,
the two models have diametrically opposed goals; while
the player seeks to maximize the loss, the transcriber at-
tempts to minimize the loss. Once the loss function has
been optimized during training, testing data may be evalu-
ated by the transcriber and drum events are found through
peak picking.

2.1 Feature Generation

Input audio (16-bit .wav file sampled at 44.1kHz) is seg-
mented into T frames using a Hanning window of m sam-
ples (m = 2048) with a m

2 hopsize. A logarithmic fre-
quency representation of each of the frames is created us-
ing a similar process to [21] using the madmom Python
library [1]. The magnitudes of a discrete Fourier transform
are converted to a logarithmic scale (20Hz–20kHz) using
twelve triangular filters per octave, resulting in a 84 x T
logarithmic spectrogram x and corresponding target y.

2.2 Player

The aim of the player is to exploit weaknesses within the
transcriber through a manipulation of the training data.
This is achieved using two processes as demonstrated in
Figure 2: data augmentation (Section 2.2.1), which alters
the frequential content of existing data; and sample addi-
tion (Section 2.2.2), which adds recordings of individual
drum hits from drum samples (Section 2.2.3) to the pre-
existing training examples. To ensure that the process is
end-to-end and that the player network can be trained us-
ing back propagation, the process must be differentiable.
To this end, the entire process is designed around network
defined variables θ (Sections 2.2.4 and 2.2.5) and avoids
operations such as argmax.

2.2.1 Data Augmentation

The data augmentation stage is based on existing data aug-
mentation approaches [8], however also aims to portray
changes in instrumentation and performance techniques by
manipulating the frequency content of pre-existing data.
This is achieved using three network-generated variables
(θp, θn and θg), in which θp and θn are used within an
pseudo-equaliser function and θg as an overall gain. Time-
step t of the augmented segment xaug is calculated using:

xtaug = ReLU(xt + (s(θp)xtv)− (s(θn)xtv))g, (1)

where v and s, the softmax functions are used to prevent
over augmentation by limiting maximum augmentation to
either 1 or -1. The rectified linear unit function (ReLU)
ensures non-negativity and g is determined using:

g = θg(1−ming) +ming, (2)

where ming is a hyperparameter that determines the mini-
mum possible gain.

2.2.2 Sample Addition

The sample addition stage aims to reduce transcription ac-
curacy by adding new drum hits to the augmented existing
training data using drum samples c (Section 2.2.3). This
is achieved by generating a new spectrogram q and cor-
responding target u and adding them to the existing aug-
mented training spectrogram xaug and target y:

x = xaug + qω, (3)

y = y + uω. (4)

ω is the sample number and the total sample number hy-
perparameter Ω determines how many of each sample class
are added. Each sample is added in an iterative process
with the latest version of y and xaug used in the update
equations. To create q and u, four network determined
variables are used: θps, θns and θgs which are variables
used to augment each sample using the previously ex-
plained augmentation process and θl, which is used to de-
termine the location of the additional drum samples. For
all four network-determined variables, if Ω > 1 a different
variable is used for each sample (i.e., θl = [θl1, θ

l
2]). The
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Figure 2. Overview of player model (Section 2.2) with
a data augmentation stage that alters frequency content of
pre-existing data and a sample addition stage that adds new
drum hits based on generated locations.

generated target u is created using two variables: f , an ac-
tivation function derived from the network determined pa-
rameter θl and k, a variable that ensures there are no over-
laps between the same drum class. The activation function
f for each individual drum sample is derived using:

iω =
θlω

max(θlω)
, (5)

fω = ReLU(iω + ε−max(iω))
1

ε
, (6)

where ε is used to prevent undefined numbers. k is calcu-
lated from the current target y using a minimum distance
between possible locations hyperparameter d:

htω = mean(yt−d : yt+d), (7)

nω =
max(hω)

hω
(hω − ε), (8)

kω = 1−ReLU(
nω

max(nω)
). (9)

u is then generated by performing element wise multipli-
cation on the two activation functions f and k:

uω = kω � fω. (10)

To calculate the new spectrogram q, a matrix consisting of
all of the possible spectrograms for all T time steps e is
created using:

zω = pad(caugω, T, T ), (11)

etω = zt+bω : zt+b+Tω , (12)

where caug is the augmented current sample spectrogram
and pad(c, 1, 1) means zero pad c by 1 in both directions in
the time-step dimension. The spectrogram with the sample
in the chosen location is then calculated using:

qω =

T∑
t=1

etωu
t
ω. (13)

It is worth noting that the proposed sample addition tech-
nique is capable of learning to not add any samples by
putting the samples in locations where they overlap other
locations and so will be removed.

2.2.3 Drum Samples

For drum samples (i.e., isolated drum events) to be utilised
within the player model they must be segmented and un-
dergo the same processing as the input features x. Segmen-
tation of drum events from within larger audio files was
achieved automatically through an automatic drum tran-
scription method [13], and subsequently verified manually.
Each sample is then cut to a pre-determined sample length
with b frames before the onset. In this work a sample
length of 50 is used with b = 10. The segmented samples
are then converted to logarithmic spectrograms c through
the process presented in Section 2.1. More information re-
garding the extraction of samples is given in Section 3.3.

2.2.4 Variations

From the augmentation and sample addition processes we
create three different versions of the player model. The
first version, termed AugExist augments existing training
data using only the augmentation stage. The second ver-
sion, termed AugAddExist uses both stages to augment
existing training data and add drum samples to the aug-
mented data. The final version, termed Generate gener-
ates entirely new training data by initializing x and y with
zeros (i.e., no existing training data).

2.2.5 Player Network

The player neural network generates θ using a convolu-
tional neural network consisting of two 3x3 kernel convo-
lutional layers with max pooling, dropout [17] and batch
normalisation [6], followed by a sigmoid fully connected
output layer. The first convolutional layer is comprised
of 5 channels and the second layer contains 10 channels.
The size of the max pooling layer is altered depending on
the player parameters (i.e., Ω, v, ming) so that the total
number of trainable parameters of each model is compa-
rable. The input features are the existing training data x
and the different drum instrument samples c concatenated
along the time dimensions. Throughout the remainder of
this paper, all trainable player parameters are denoted as ζ.

2.3 Transcriber
The transcriber model follows the same system outline pro-
posed in [14]. Input features are fed into a pre-trained
neural network, which aims to output an activation func-
tion ỹ with spikes in frames where onsets are located. In
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this paper, we present a novel system that combines the
strength of two recently proposed models. The soft at-
tention mechanism presented in [15] is combined with the
convolutional recurrent neural network proposed in [21] to
create a convolutional recurrent neural network with a soft
attention mechanism output layer. It contains two convo-
lutional layers consisting of 3x3 filters, 3x3 max pooling,
dropouts [17] and batch normalization [6], with the first
layer consisting of 32 channels and the second is com-
prised of 64 channels. This is followed by two 20 neu-
ron bidirectional recurrent neural network layers contain-
ing long short-term memory cells with peephole connec-
tions and a three-neuron sigmoid soft attention mechanism
output layer. The attention number is set to 3 [15] and
all other unstated variables are the same as the original im-
plementations [15, 21]. Throughout the remainder of this
paper, all trainable transcriber parameters are denoted as φ.

2.4 Peak Picking
Once the optimisation process is complete, the peak-
picking stage classifies frames of ỹ as either containing or
not containing an onset. We use the mean threshold (MT)
peak-picking technique from [15]. First a threshold τ t is
determined as:

τ t = mean(ỹt−γ : ỹt+γ) ∗ λ (14)

τ t =

{
tmax, τ > tmax
tmin, τ < tmin,

(15)

where λ is a constant, tmax and tmin are the possible
maximum and minimum values and γ sets the number of
frames used to calculate the mean. The current frame of ỹ
is accepted as an onset if it is the maximum of a surround-
ing number of frames and above the threshold τ :

Ot =

{
1, ỹt == max(ỹt−δ : ỹt+δ) & ỹt > τ t

0, otherwise,
(16)

where O(t) represents an onset at time step t and δ is the
number of frames on either side of the current frame t used
to calculate the maximum.

2.5 Training
The player and transcriber are iteratively trained for one
epoch each in a two-stage process, in which the player
is first trained by updating ζ and then the transcriber is
trained by updating φ. Cross entropy is used to minimise
the loss function in both instances with 1 − y used as the
player target and y used as the transcriber target. Both sys-
tems are trained using mini-batch gradient descent with the
Adam optimiser and an initial learning rate of 0.003. These
settings were determined using previous ADT studies [15]
and also suited the player network well with no instability
observed. Each mini-batch consists of 10 randomly cho-
sen, 100 frame length segments. The data is divided into
training, validation and test sets, with the training data used
to optimize the systems and the validation used to prevent
over fitting and to optimize the player and peak-picking pa-
rameters. Training is stopped if there has been no decrease
in the transcriber validation loss after 10 epochs.

3. EVALUATION
To identify whether the PvT approach improves ADT per-
formance, we compare it with the current state-of-the-art
supervised ADT approach in six evaluation conditions,
consisting of the three contexts and two evaluation strate-
gies used in [22]. To determine whether similarity be-
tween drum samples and existing training data affects per-
formance, two different sample libraries are utilised.

3.1 Contexts
For the first context, termed drum transcription of drum-
only recordings (DTD) we utilise the IDMT-SMT-Drums
dataset [2]. For the second context, termed termed drum
transcription in the presence of percussion (DTP) we
utilise the drum-only tracks within the ENST-Drums mi-
nus one subset [3] and MDB Drums [16]. The third con-
text, termed drum transcription in the presence of melodic
instruments (DTM), utilises the full polyphonic audio from
the ENST-Drums minus one subset, MDB-Drums and
RBMA-2013 [21].

3.2 Evaluation Strategies
The first strategy, termed random, utilises all of the con-
text data and divides the tracks in to 70%, 15% and 15%
training, validation and test subsets with three-fold cross
validation. The second strategy, termed subset, utilises all
data for the DTD context and only ENST-Drums for DTP
and DTM. This strategy aims to test the generalisability
of the systems by utilising the existing subsets within the
datasets so that the training and testing data are unrelated.

3.3 Sample Usage

For drum samples, two sample libraries are used to test for
the effect of similarity to existing training data. In addition
to these, percussive mixtures are also generated using the
content of the unobserved drum samples.

Training: The first library, termed training, only utilises
samples extracted from the training data. For the IDMT-
SMT-Drums dataset, a single sample for each observed
drum instrument is extracted from each of the 104 tracks.
For ENST-Drums the samples are extracted from the
included isolated drum files, resulting in a total of 276
samples (21 KD, 146 SD and 109 HH). No samples
are extracted from the other datasets; in the DTP and
DTM cases the training sample library only consists of
ENST-Drum samples.

Collection: The second sample library, termed collection,
consists of drum samples collected from online resources.
The collection samples are included as they represent a
dataset with a wider diversity and are not included in the
existing training data. In total, there are 445 samples (101
KD, 151 SD and 193 HH).

Polyphonic Instances: For the DTP versions of the
Generate system, the player network output is combined
with artificial percussive mixture segments created from
other percussive samples (i.e., toms and cymbals) extracted
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Figure 3. Results for random (top) and subset (bottom) strategies for DTD (left), DTP (middle) and DTM (right) contexts.
Crosses denote mean instrument and mean fold F-measure, dashed lines present mean instrument and median fold F-
measure and box plots present F-measure range across folds.

Figure 4. Individual and mean instrument F-measure, pre-
cision and recall scores for existing state-of-the-art sys-
tem (S) and highest performing AugAddExist PvT model
(AAE) using random (top) and subset (bottom) strategies.

from the ENST-Drums isolated files. For the DTM ver-
sions of the Generate system the player network output is
combined with the artificial percussive mixtures as well as
the accompaniment files from the ENST-Drums and MDB-
Drums datasets.

3.4 Evaluation Methodology
In all evaluations, the three proposed PvT models—
AugExist (AE), AugAddExist (AAE) and Generate (G)—
are compared with the current state-of-the-art supervised
ADT approach (S), which consists solely of the transcriber
model. Additionally, two versions of the AAE system are
evaluated: for the first (AAER), the θ parameters are set to
the highest performing random values using a grid search

with the aim of portraying existing data augmentation tech-
niques [8], and the second (AAEC) uses data from the col-
lection samples alone (Section 3.3). The standard preci-
sion, recall and F-measure are used as evaluation metrics,
with onset candidates being accepted if they fall within
30ms of the ground truth annotations. For all PvT systems
d is set to 3 (approx. 30ms) b is set to 10 and hyperpa-
rameters v, ming and Ω are optimized using grid search.
To prevent either networks from overpowering the other,
the player max pooling sizes are set so that the number
of parameters ζ matches that of the transcriber network φ
(approx. 100,000).

4. RESULTS AND DISCUSSION
4.1 Random and Subset
Figure 3 presents the random and subset results for the six
implemented systems in the three contexts. The crosses
represent the mean instrument F-measures and the box
plots present the median and range across the folds. In
all cases the trained versions of the AugExist (AE) and
AugAddExist (AAE) systems achieve a higher mean F-
measure and median F-measure than the existing state-of-
the-art supervised method (S), with the box plots show-
ing that this improvement is consistent in the major-
ity of the folds. Results from t-tests across folds high-
light that the improvements made by all AugExist and
AugAddExist systems in the random DTD evaluation are
significant (i.e., ρ < 0.05). Larger improvements are
seen in the subset evaluation—designed specifically to test
the generalisability of the systems [22]—which suggests
that the PvT model does improve generalisability. For all
PvT variations, the trained AugAddExist player versions
(AAE) achieve higher accuracies than the grid search-set
AugAddExist system (AAER). This demonstrates the worth
of utilising a player network to learn the weaknesses of the
transcriber model and its ability to manipulate each of the
segements based on the content. Although the Generate
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Figure 5. Mean fold, mean instrument and mean training strategy F-measure results of different AugAddExist settings for
PvT model hyperparameters v (left), ming (middle) and Ω (right).

systems do not achieve a higher F-measure they achieve
a high accuracy relative to the amount of human input re-
quired within the process. Again, this is more apparent in
the subset and easier contexts. The lower improvements
achieved by the AugAddExist and Generate systems in
the DTP and DTM contexts can be attributed to the limi-
tation of samples from just the ENST dataset. This high-
lights that the more diverse the sample library, the larger
the improvement in performance. However, the results
from the system trained using the collection sample library
(AAEC) show that too much diversity can cause the sys-
tem to underfit, resulting in a slightly lower improvement
being observed. The random-θ and collection sample li-
brary versions of the AugExist and Generate versions
were also implemented but not included within the results
as the trends are the same as the AAER and AAEC systems.

4.2 Individual Instrument

Figure 4 presents the mean fold, mean context individ-
ual and mean drum instrument F-measure, precision and
recall scores for the supervised and highest performing
AugAddExist systems. In all cases the AugAddExist sys-
tem achieves higher F-measure precision and recall scores
for all of the observed drum instruments with 0.015 in-
crease in mean instrument F-measure in random and 0.035
increase in subset. The largest relative improvement is
within the snare drum class, which further suggests the in-
crease is due to greater generalisability, as it has proven to
be the most difficult instrument to generalise [22].

4.3 Player Settings

Figure 5 presents mean instrument, mean fold and mean
training strategy F-measure results for the AugAddExist

system with different user defined hyperparameter set-
tings. The left diagram presents results for different val-
ues of v, the middle diagram for different values of ming
and the right diagram different values of Ω. v = 0.0005
achieved the highest accuracies with lower values not al-
lowing enough manipulation and higher values causing
class overlap. ming = 0.9 achieved the highest accu-
racy overall however, within the DTP and DTM contexts
lower values achieved similar results. This is possibly due
to the fact that a larger diversity of playing technique is
present within those contexts. Adding a maximum of two
extra drum hits (Ω = 2) resulted in the highest accuracies
with larger values causing too much overlap between in-
struments.

4.4 Understanding What The Player Does

By observing the player model training it is possible to
gain an understanding of poorly defined areas of the fea-
ture space within ADT datasets. When the player performs
data augmentation, a maximum amount of augmentation is
selected most of the time (i.e., the output of the ReLU func-
tion in eq. 1 is close to either 1 or -1). This suggests that
there are substantial gaps in coverage of training datasets in
the feature space for the different instrumentation. Within
the sample addition stage the player model consistently at-
tempts to overlap drums with both other drum instruments
and other instrumentation within the existing training data.
This suggests that the datasets only contain limited obser-
vations of overlapping instrument combinations.

5. CONCLUSIONS AND FUTURE WORK

To overcome the requirement of time-consuming manual
annotation, we proposed PvT, a game approach to auto-
matic drum transcription. The player model is trained to
alter the training data so that the accuracy of the tran-
scriber model is reduced. The three implemented versions
of the PvT model—AugExist (AE), AugAddExist (AAE)
and Generate (G)—are evaluated alongside the existing
supervised state-of-the-art ADT (S) and a grid search-
set AugAddExist approach (AAER) using two evaluation
strategies and three contexts. The results highlight that the
trainable PvT model does improve ADT performance with
AugAddExist achieving the highest accuracy in all evalu-
ations. The Generate model also provides a viable option
when annotated training data is not accessible. Although
two approaches to alter the training data have been im-
plemented, more are possible. Future work could explore
trainable methods for moving existing drum events or syn-
thesizing new drum samples within the player network, as
there are no structural constraints on what the player can
do. For polyphonic cases, the unobserved instrumentation
could also be included within the player network so that
further combinations can be generated. Another possible
direction is to increase the number of observed drum in-
struments (i.e., including toms and crash cymbals), which
is easily done using the Generate model. Open source
versions of the PvT model are available online. 2

2 https://github.com/CarlSouthall/
Player-Vs-Transcriber

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 63



6. REFERENCES
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