
  

 

MUSICAL TEXTURE AND EXPRESSIVITY FEATURES FOR 

MUSIC EMOTION RECOGNITION 

Renato Panda Ricardo Malheiro Rui Pedro Paiva 

CISUC – Centre for Informatics and Systems, University of Coimbra, Portugal 
{panda, rsmal, ruipedro}@dei.uc.pt 

ABSTRACT 

We present a set of novel emotionally-relevant audio fea-

tures to help improving the classification of emotions in 

audio music. First, a review of the state-of-the-art regard-

ing emotion and music was conducted, to understand how 

the various music concepts may influence human emo-

tions. Next, well known audio frameworks were analyzed, 

assessing how their extractors relate with the studied mu-

sical concepts. The intersection of this data showed an un-

balanced representation of the eight musical concepts. 

Namely, most extractors are low-level and related with 

tone color, while musical form, musical texture and ex-

pressive techniques are lacking. Based on this, we devel-

oped a set of new algorithms to capture information related 

with musical texture and expressive techniques, the two 

most lacking concepts. To validate our work, a public da-

taset containing 900 30-second clips, annotated in terms of 

Russell’s emotion quadrants was created. The inclusion of 

our features improved the F1-score obtained using the best 

100 features by 8.6% (to 76.0%), using support vector ma-

chines and 20 repetitions of 10-fold cross-validation. 

1. INTRODUCTION 

Music Emotion Recognition (MER) research has increased 

in the last decades, following the growth of music data-

bases and services. This interest is associated to music’s 

ability to “arouse deep and significant emotions”, being 

“its primary purpose and the ultimate reason why humans 

engage with it” [1]. Different problems have been tackled, 

e.g., music classification [2]–[4], emotion tracking [5], [6], 

playlists generation [7], [8], exploitation of lyrical infor-

mation and bimodal approaches [9]–[12]. Still, some limi-

tations affect the entire MER field, among which: 1) the 

lack of public high-quality datasets, as used in other ma-

chine learning fields to compare different works; and 2) 

the insufficient number of emotionally-relevant acoustic 

features, which we believe are needed to narrow the exist-

ing semantic gap [13] and push the MER research forward. 

Furthermore, both the state-of-the-art research papers 

                                                             
1 http://www.music-ir.org/mirex/ 

(e.g., [14], [15]) and MIREX Audio Mood Classification 

(AMC) comparison1 results from 2007 to 2017 are still not 

accurate enough in easier classification problems with four 

to five emotion classes, let alone higher granularity solu-

tions and regression approaches, showing a glass ceiling in 

MER system performances [13].  

Many of the audio features applied currently in MER 

were initially proposed to solve other information retrieval 

problems (e.g. MFCCs and LPCs in speech recognition 

[16]) and may lack emotional relevance. Therefore, we hy-

pothesize that, in order to advance the MER field, part of 

the effort needs to focus on one key problem: the design of 

novel audio features that better capture emotional content 

in music, currently left out by existing features. 

This raises the core question we aim to tackle in this 

paper: can higher-level features, namely expressivity and 

musical texture features, improve emotional content detec-

tion in a song?  

In addition, we have constructed a dataset to validate 

our work, which we consider better suited to the current 

MER state-of-the-art: avoids overly complex or unvali-

dated taxonomies, by using the four classes or quadrants, 

derived from the Russell’s emotion model [17]; does not 

require a full manual annotation process, by using AllMu-

sic annotations and data2, with a simpler human validation, 

thus reducing resources needed. 

We achieved an improvement of up to 7.9% in F1-Score 

by adding our novel features to the baseline set of state-of-

the-art features. Moreover, even when the top 800 baseline 

features is employed, the result is 4.3% below the one ob-

tained with the top100 baseline and novel features set.  

This paper is organized as follows. Section 2 reviews 

the related work. Section 3 describes the musical concepts 

and related state-of-the-art audio features. Dataset acquisi-

tion, the novel audio features design and classification 

strategies are also presented. In Section 4, experimental re-

sults are discussed. Conclusions and future work are drawn 

in Section 5. 

2. RELATED WORK 

Emotions have been a research topic for centuries, leading 

to the proposal of different emotion paradigms (e.g., cate-

gorical or dimensional) and associated taxonomies (e.g., 

2 https://www.allmusic.com/moods 
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Hevner, Russell) [17], [18]. More recently, these have 

been employed in many MER computational systems, e.g., 

[2]–[7], [9], [12], [19], [20], and MER datasets, e.g., [4], 

[6], [20]. 
Regarding emotion in music, it can be view as: i) the 

perceived emotion, identified when listening; ii) emotion 

felt, representing the emotion felt when listening, which 

may be different from the perceived; iii) or the emotion 

transmitted, which is the emotion a performer intended to 

deliver. This work is focused on perceived emotions, since 

it is more intersubjective, as opposed to emotion felt, more 

personal and dependent of context, memories and culture. 

As for associations between emotions and musical at-

tributes, many features such as: articulation, dynamics, 

harmony, loudness, melody, mode, musical form, pitch, 

rhythm, timbre, timing, tonality or vibrato have been pre-

viously linked to emotion [8], [21], [22]. However, many 

are yet to be fully understood, still requiring further re-

search, while others are hard to extract from audio signals. 

These musical attributes can be organized into eight differ-

ent categories, each representing a core concept, namely: 

dynamics, expressive techniques, harmony, melody, musi-

cal form, musical texture, rhythm and tone color (or tim-

bre). Several audio features have been created (hereinafter 

referred to as standard audio or baseline features) and are 

nowadays implemented in audio frameworks (e.g. 

Marsyas [23], MIR toolbox [24] or PsySound [25]). Even 

though hundreds of features exist, most belong to the same 

category – tone color, while others were developed to 

solve previous research problems and thus might not be 

suited for MER (e.g., Mel-frequency cepstral coefficients 

(MFCCs) for speech recognition). On the other hand, the 

remaining categories are underrepresented, with expres-

sivity, musical texture or form nearly absent. 

Finally, as opposed to other information retrieval fields, 

MER researchers lack standard public datasets and bench-

marks to compare existent works’ adequately. As a conse-

quence, researchers use private datasets (e.g., [26]), or 

have access only to features and not the actual audio (e.g., 

[27]). While efforts such as the MIREX AMC task im-

prove the situation, issues have been identified. To begin 

with, the dataset is private, use in the annual contest only. 

Also, it uses an unvalidated taxonomy derived from data 

containing semantic and acoustic overlap [3]. 

3. METHODS 

In this section, due to the abovementioned reasons, we start 

by introducing the dataset built to validate our work. Fol-

lowing, we detail the proposed novel audio features and 

emotion classification strategies tested. 

3.1 Dataset Creation 

To bypass the limitations described in Section 2 we have 

created a novel dataset based using an accepted and vali-

dated psychological model. We decided on Russell’s cir-

cumplex model [17], which allows us to employ a simple 

                                                             
1 http://developer.rovicorp.com/docs 

taxonomy of four emotion categories, based on the quad-

rants resulting from the division by the arousal and valence 

(AV) axes).  
First, we obtained music data (30-second audio clips) 

and metadata (e.g., artist, title, mood and genre) from the 

AllMusic API1. The mood metadata consisted of several 

tags per song, from a list of 289 moods. These 289 tags are 

intersected with the Warriner’s list [28] – an improvement 

on ANEW adjectives list [29], containing 13915 English 

words with AV ratings according to Russell’s model. This 

intersection results in 200 AllMusic tags mapped to AV, 

which can be translated to quadrants. Since we considered 

only songs with three or more mood tags, each song is as-

signed to the quadrant that has the highest associated num-

ber of tags (and at least 50% of the moods are from it). 

The AllMusic emotion tagging process is not fully doc-

umented, apart from apparently being made by experts 

[30]. Questions remain on whether these experts are con-

sidering only audio, only lyrics or a combination of both. 

Besides, the 30-second clips selection that represent each 

song in AllMusic is also undocumented. We observed sev-

eral inadequate clips (e.g., containing noise such as ap-

plauses, only speech, long silences from introductions). 

Therefore, a manual blind validation of the candidate set 

was conducted. Subjects were given sets of randomly dis-

tributed clips and asked to annotate them according to the 

perceived emotion in terms of Russell’s quadrants. 

 The final dataset was built by removing the clips where 

the subjects’ and AllMusic derived quadrants’ annotations 

did not match. The dataset was rebalanced to contain ex-

actly 225 clips and metadata per cluster, in a total of 900 

song entries, which is publicly available in our site2. 

3.2 Standard or Baseline Audio Features 

Marsyas, MIR Toolbox and PsySound3, three state-of-the-

art audio frameworks typically used in MER studies, were 

used to extract a total of 1702 features. This high number 

is in part due to the computation of several statistical for 

the resulting time series data. To reduce this and avoid pos-

sible feature duplication across different frameworks, first 

we obtained the weight of each feature to the problem us-

ing ReliefF [31] feature selection algorithm. Next, we cal-

culated the correlation between each pair of features, re-

moving the lowest weight one for each pair with a correla-

tion higher than 0.9. This process reduced the standard 
audio features set to 898 features, which was used to 
train baseline models. These models were then used to 
benchmark models trained with the baseline and novel 
feature sets. An analogous feature reduction procedure 
was also performed in the novel features set presented 
in Section 3.3. 

3.3 Novel Audio Features 

Although being used constantly in MER problems, many 

of the standard audio features are very low-level, extract-

ing abstract metrics from the spectrum or directly from the 

audio waveform. Still, humans naturally perceive higher-

level musical concepts such as rhythm, harmony, melody 

2 http://mir.dei.uc.pt/downloads.html 
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lines or expressive techniques based on clues related with 

notes, intervals or scores. To propose novel features that 

related to these higher-level concepts we built on previous 

works to estimate musical notes and extract frequency and 

intensity contours. We briefly describe this initial step in 

the next section. 

3.3.1 Estimating MIDI notes 

Automatic transcription of music audio signals to scores is 

still and open research problem [32]. Still, we consider that 

using such existing algorithms, although imperfect, pro-

vide important information currently unused in MER. 

To this end, we built on works by Salomon et al. [33] 

and Dressler [34] to estimate predominant fundamental 

frequencies (f0) and saliences. This process starts by iden-

tifying the frequencies present in the signal at each point 

in time (sinusoid extraction), using 46.44 msec (1024 sam-

ples) frames with 5.8 msec (128 samples) hopsize (hereaf-

ter denoted ℎ𝑜𝑝). Next, the pitches in each of these mo-

ments are estimated using harmonic summation (obtaining 

a pitch salience function). Then, pitch contours are created 

from the series of consecutive pitches, representing notes 

or phrases. Finally, a set of rules is used to select the f0s 

that are part of the predominant melody [33]. The resulting 

pitch trajectories are then segmented into individual MIDI 

notes following the work by Paiva et al. [35].  

Each of the N obtained notes, hereafter denoted 

as 𝑛𝑜𝑡𝑒𝑖, is characterized by: 1) the respective sequence of 

f0s (a total of 𝐿𝑖  frames),  𝑓0𝑗,𝑖 , 𝑗 = 1, 2, … 𝐿𝑖 ; the corre-

sponding MIDI note numbers (for each f0), 𝑚𝑖𝑑𝑖𝑗,𝑖; 2) the 

overall MIDI note value (for the entire note), 𝑀𝐼𝐷𝐼𝑖; 3) the 

sequence of pitch saliences, 𝑠𝑎𝑙𝑗,𝑖 ; 4) the note duration, 

𝑛𝑑𝑖 (sec); starting time, 𝑠𝑡𝑖 (sec); and 5) ending time, 𝑒𝑡𝑖 

(sec). This data is used to model higher level concepts re-

lated with expressive techniques, such as vibrato. 

In addition to the predominant melody, music typically 

contains other melodic lines produced by distinct sources. 

Some researchers have also proposed algorithms to multi-

ple (also known as polyphonic) F0 contours estimation 

from these constituent sources. We use Dressler’s multi-

F0 approach [34] to obtain a framewise sequence of fun-

damental frequencies estimates to assess musical texture. 

3.3.2 Musical texture features 

Previous studies have verified that musical texture can in-

fluence emotion in music, either directly or in combination 

with tempo and mode [36]. However, as stated in Section 

2, very few of the available audio features are directly re-

lated with this musical concept. Thus, we propose features 

to capture information related with the musical layers of a 

song, based on the simultaneous layers in each frame using 

the multiple frequency estimates described above. 

Musical Layers (ML) statistics. As mentioned, vari-

ous multiple F0s are estimated from each audio frame. 

Then, we define the number of layers in a frame as the 

number of obtained multiple F0s in that frame. The ob-

tained data series, representing the number of musical lay-

ers in each instant during the clip, is then summarized us-

ing six statistics: mean (MLmean), standard deviation 

(MLstd), skewness (MLskw), kurtosis (MLkurt), maxi-

mum (MLmax) and minimum (MLmin) values. The same 

six statistics are applied similarly to the other proposed 

features. 

Musical Layers Distribution (MLD). Here, the num-

ber of 𝑓0 estimates in each frame is categorized in one of 

four classes: i) no layers; ii) a single layer; iii) two simul-

taneous layers; iv) and three or more layers. The percent-

age of frames in each of these four classes is computed, 

measuring, as an example, the percentage of the song iden-

tified as having a single layer (MLD1). Similarly, we com-

pute MLD0, MLD2 and MLD3.  

Ratio of Musical Layers Transitions (RMLT). These 

features capture the amount of transitions (changes) from 

a specific musical layer sequence to another (e.g., ML1 to 

ML2). To this end, we count consecutive frames having 

distinct numbers of fundamental frequencies (f0s) esti-

mated in each as a transition. The total number of these 

transitions is normalized by the length of the audio seg-

ment (in secs). Additionally, we also compute the length 

in seconds of the longest audio segment for each of the four 

musical layers classes. 

3.3.3 Expressivity features 

Expressive techniques such as vibrato, tremolo and articu-

lation are used frequently by composers and performers, 

across different genres. Some studies have linked them to 

emotions [37]–[39], still the number of standard audio fea-

tures studied that are primarily related with expressive 

techniques is low. 

 

Articulation Features 

Articulation relates to how specific notes are played and 

expressed together. To capture this, we first detect legato 

(i.e., connected notes played “smoothly”) and staccato 

(i.e., short and detached notes), as defined in Algorithm 1. 

Using this, we classify all the transitions between notes in 

the song clip and, from them, extract several metrics such 

as: ratio of staccato, legato and other transitions, longest 

sequence of each articulation type, etc. 

 
ALGORITHM 1 

ARTICULATION DETECTION. 

1. For each pair of consecutive notes, 𝑛𝑜𝑡𝑒𝑖 and 𝑛𝑜𝑡𝑒𝑖+1: 

1.1. Compute the inter-onset interval (IOI, in sec), i.e., the interval 

between the onsets of the two notes, as: 𝐼𝑂𝐼 = 𝑠𝑡𝑖+1 − 𝑠𝑡𝑖. 

1.2.  Compute the inter-note silence (INS, in sec), i.e., the duration of 

the silence segment between the two notes, as follows: 𝐼𝑁𝑆 =

 𝑠𝑡𝑖+1 − 𝑒𝑡𝑖. 

1.3. Calculate the ratio of INS to IOI (INStoIOI), which indicates how 

long the interval between notes is, compared to the duration of 

𝑛𝑜𝑡𝑒𝑖. 

1.4. Define the articulation between 𝑛𝑜𝑡𝑒𝑖 and 𝑛𝑜𝑡𝑒𝑖+1, 𝑎𝑟𝑡𝑖, as: 

1.4.1. Legato, if the distance between notes is less than 10 msec, 

i.e., 𝐼𝑁𝑆 ≤ 0.01 ⇒ 𝑎𝑟𝑡𝑖 = 1. 

1.4.2. Staccato, if the duration of 𝑛𝑜𝑡𝑒𝑖 is short (i.e., less than 

500 msec) and the silence between the two notes is rela-

tively similar to this duration, i.e., 𝑛𝑑𝑖 < 0.5 ∧ 0.25 ≤

𝐼𝑁𝑆𝑡𝑜𝐼𝑂𝐼 ≤ 0.75 ⇒ 𝑎𝑟𝑡𝑖 = 2. 

1.4.3. Other Transitions, if none of the abovementioned two 

conditions was met (𝑎𝑟𝑡𝑖 = 0). 

 
In Algorithm 1, the employed threshold values were set 
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experimentally. Then, we define the following features: 

Staccato Ratio (SR), Legato Ratio (LR) and Other 

Transitions Ratio (OTR). These features indicate the ra-

tio of each articulation type (e.g., staccato) to the total 

number of transitions between notes. 

Staccato Notes Duration Ratio (SNDR), Legato 

Notes Duration Ratio (LNDR) and Other Transition 

Notes Duration Ratio (OTNDR) statistics. These repre-

sent statistics based on the duration of notes for each artic-

ulation type. As an example, with staccato (SNDR), the ra-

tio of the duration of notes with staccato articulation to the 

sum of the duration of all notes, as in Eq. 1. For each, the 

6 statistics described in Section 3.3.2 are calculated. 

 

𝑆𝑁𝐷𝑅 =  
∑ [𝑎𝑟𝑡𝑖 = 1] ∙ 𝑛𝑑𝑖

𝑁−1
𝑖=1

∑ 𝑛𝑑𝑖
𝑁−1
𝑖=1

 (1) 

 
Glissando Features 

Glissando is another expressive articulation, which is the 

slide from one note to another. Normally used as an orna-

mentation, to add interest to a piece, may be related to spe-

cific emotions in music.  

We assess glissando by analyzing the transition be-

tween two notes, as described in Algorithm 2. This transi-

tion part is saved at the beginning of the second note by 

the segmentation method applied (mentioned in Section 

3.3.1) [35]. The second note must start with a climb or de-

scent, of at least 100 cents, which may contain spikes and 

slight oscillations in frequency estimates, followed by a 

stable sequence.  

 
ALGORITHM 2 

GLISSANDO DETECTION. 

1. For each note i: 

1.1. Get the list of unique MIDI note numbers, 𝑢𝑧,𝑖 , 𝑧 = 1, 2, ⋯ , 𝑈𝑖, 

from the corresponding sequence of MIDI note numbers (for each 

f0), 𝑚𝑖𝑑𝑖𝑗,𝑖, where 𝑧 denotes a distinct MIDI note number (from 

a total of 𝑈𝑖 unique MIDI note numbers). 
1.2. If there are at least two unique MIDI note numbers: 

1.2.1. Find the start of the steady-state region, i.e., the index, 𝑘, 
of the first note in the MIDI note numbers sequence, 

𝑚𝑖𝑑𝑖𝑗,𝑖 , with the same value as the overall MIDI 

note, 𝑀𝐼𝐷𝐼𝑖, i.e.,  𝑘 = min
1≤𝑗≤𝐿𝑖, 𝑚𝑖𝑑𝑖𝑗,𝑖=𝑀𝐼𝐷𝐼𝑖

𝑗, 

1.2.2. Identify the end of the glissando segment as the first index, 

𝑒, before the steady-state region, i.e., 𝑒 = 𝑘 − 1. 
1.3. Define 

1.3.1. 𝑔𝑑𝑖 = glissando duration (sec) in note i, i.e., 𝑔𝑑𝑖  =  𝑒 ∙
ℎ𝑜𝑝. 

1.3.2. 𝑔𝑝𝑖 = glissando presence in note i, i.e., 𝑔𝑝𝑖 = 1 if  𝑔𝑑𝑖 >
0; 0, otherwise.  

1.3.3. 𝑔𝑒𝑖  = glissando extent in note i, i.e., 𝑔𝑒𝑖 = |𝑓01,𝑖 −

𝑓0𝑒,𝑖| in cents. 

1.3.4. 𝑔𝑐𝑖 = glissando coverage of note i, i.e., 𝑔𝑐𝑖 =  𝑔𝑑𝑖/𝑑𝑢𝑟𝑖. 

1.3.5. 𝑔𝑑𝑖𝑟𝑖  = glissando direction of note i, i.e., 𝑔𝑑𝑖𝑟𝑖 =
 𝑠𝑖𝑔𝑛(𝑓0𝑒,𝑖−𝑓01,𝑖). 

1.3.6. 𝑔𝑠𝑖  = glissando slope of note i, i.e., 𝑔𝑠𝑖 =  𝑔𝑑𝑖𝑟𝑖 ∙ 𝑔𝑒𝑖/
𝑔𝑑𝑖. 

 
Based on the output of Algorithm 2 we define: 

Glissando Presence (GP). A song clip contains glis-

sando if any of its notes has glissando, as in (2). 

𝐺𝑃 = {
1, if ∃ 𝑖 ∈  {1, 2, … , 𝑁} ∶  𝑔𝑝𝑖 = 1
0, otherwise

    (2) 

 

If GP = 1, we then compute the remaining glissando 

features. 
Glissando Extent (GE) statistics. Using the glissando 

extent of each note, 𝑔𝑒𝑖 (see Algorithm 2), we compute the 

6 statistics (Section 3.3.2) for notes containing glissando. 

Glissando Duration (GD) and Glissando Slope (GS) 

statistics. Similarly to GE, we also compute the same sta-

tistics for glissando duration, based on 𝑔𝑑𝑖  and slope, 

based on 𝑔𝑠𝑖 (see Algorithm 2).  

Glissando Coverage (GC). For glissando coverage, we 

compute the global coverage, based on 𝑔𝑐𝑖, using (3). 

 

𝐺𝐶 =
∑ 𝑔𝑐𝑖 ∙ 𝑛𝑑𝑖

𝑁
𝑖=1

∑ 𝑛𝑑𝑖
𝑁
𝑖=1

    (3) 

 
Glissando Direction (GDIR). This feature indicates 

the global direction of the glissandos in a song, (4): 

 

𝐺𝐷𝐼𝑅 =
∑ 𝑔𝑝𝑖

𝑁
𝑖=1

𝑁
, 𝑤ℎ𝑒𝑛 𝑔𝑑𝑖𝑟𝑖 = 1    (4) 

 
Glissando to Non-Glissando Ratio (GNGR). This 

feature represents the ratio of the notes containing glis-

sando to the total number of notes, as in (5): 

𝐺𝑁𝐺𝑅 =
∑ 𝑔𝑝𝑖

𝑁
𝑖=1

𝑁
    (5) 

 

Vibrato and Tremolo Features 

Vibrato and tremolo are expressive technique used in vocal 

and instrumental music. Vibrato consists in a steady oscil-

lation of pitch in a note or sequence of notes. Its properties 

are the: 1) the velocity (rate) of pitch variation; 2) amount 

of pitch variation (extent); and 3) duration. It varies across 

music styles and emotional expression [38].  

Given its possible relevance to MER, we apply the vi-

brato detection algorithm described in Algorithm 3, which 

was adapted from [40]. We then compute features such as 

vibrato presence, rate, coverage and extent. 

 
ALGORITHM 3 

VIBRATO DETECTION. 

1. For each note i: 

1.1. Compute the STFT, |F0𝑤,𝑖|, 𝑤 = 1, 2, ⋯ , 𝑊𝑖,   of the sequence 

𝑓0𝑖 , where 𝑤  denotes an analysis window (from a total of 𝑊𝑖 
windows). Here, a 371.2 msec (128 samples) Blackman-Harris 

window was employed, with 185.6 msec (64 samples) hopsize. 

1.2. Look for a prominent peak, 𝑝𝑝𝑤,𝑖, in each analysis window, in the 

expected range for vibrato. In this work, we employ the typical 

range for vibrato in the human voice, i.e., [5, 8] Hz [40]. If a peak 
is detected, the corresponding window contains vibrato. 

1.3. Define:  

1.3.1. 𝑣𝑝𝑖 = vibrato presence in note i, i.e.,  

𝑣𝑝𝑖 = 1 if ∃ 𝑝𝑝𝑤,𝑖;   𝑣𝑝𝑖 = 0, otherwise. 

1.3.2. 𝑊𝑉𝑖 = number of windows containing vibrato in note i. 

1.3.3. 𝑣𝑐𝑖 = vibrato coverage of note i, i.e., 𝑣𝑐𝑖 =  𝑊𝑉𝑖 𝑊𝑖⁄  (ra-
tio of windows with vibrato to the total number of win-

dows). 

1.3.4. 𝑣𝑑𝑖 = vibrato duration of note i (sec), i.e., 𝑣𝑑𝑖 =  𝑣𝑐𝑖 ∙ 𝑑𝑖. 

1.3.5. freq(𝑝𝑝𝑤,𝑖) = frequency of the prominent peak 𝑝𝑝𝑤,𝑖 (i.e., 

vibrato frequency, in Hz). 

1.3.6. 𝑣𝑟𝑖  = vibrato rate of note i (in Hz), i.e., 𝑣𝑟𝑖  = 

∑ freq(𝑝𝑝𝑤,𝑖)
𝑊𝑉𝑖
𝑤=1 𝑊𝑉𝑖⁄  (average vibrato frequency). 

1.3.7. |𝑝𝑝𝑤,𝑖|  = magnitude of the prominent peak 𝑝𝑝𝑤,𝑖  (in 

cents). 

1.3.8. 𝑣𝑒𝑖 = vibrato extent of note i, i.e., 𝑣𝑒𝑖 = ∑ |𝑝𝑝𝑤,𝑖|
𝑊𝑉𝑖
𝑤=1 𝑊𝑉𝑖⁄  

(average amplitude of vibrato). 
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Then, we define the following features. 

Vibrato Presence (VP). A song clip contains vibrato if 

any of its notes have vibrato, similarly to (2). 

Vibrato Rate (VR) statistics. Based on the vibrato rate 

value of each note, 𝑣𝑟𝑖  (see Algorithm 3), we compute 6 

statistics described in Section 3.3.2 (e.g., the vibrato rate 

weighted mean of all notes with vibrato as in Eq. 6). 

𝑉𝑅𝑚𝑒𝑎𝑛 =
∑ 𝑣𝑟𝑖 ∙ 𝑣𝑐𝑖 ∙ 𝑛𝑑𝑖

𝑁
𝑖=1

∑ 𝑣𝑐𝑖 ∙ 𝑛𝑑𝑖
𝑁
𝑖=1

    (6) 

 
Vibrato Extent (VE) and Vibrato Duration (VD) sta-

tistics. Similarly to VR, these features represent the same 

statistics for vibrato extent, based on 𝑣𝑒𝑖 and vibrato dura-

tion, based on 𝑣𝑑𝑖  (see Algorithm 3).  

Vibrato Notes Base Frequency (VNBF) statistics. As 

with VR features, we compute the same statistics for the 

base frequency (in cents) of all notes containing vibrato. 

Vibrato Coverage (VC). This represents the global vi-

brato coverage in a song, based on 𝑣𝑐𝑖 , similarly to (3). 

High-Frequency Vibrato Coverage (HFVC). Here, 

the VC is computed only for notes over C4 (261.6 Hz), 

which is the lower limit of the soprano’s vocal range [41].  

 Vibrato to Non-Vibrato Ratio (VNVR). This feature 

is defined as the ratio of the notes containing vibrato to the 

total number of notes, similarly to (5). 

 

An approach similar to vibrato was applied to compute 

tremolo features. Tremolo can be described as a trembling 

effect, to a certain degree similar to vibrato but regarding 

variation of amplitude. Here, instead of using the f0 se-

quences, the sequence of pitch saliences of each note is 

used to assess variations in intensity or amplitude. Due to 

the lack of research regarding tremolo range, we decided 

to use vibrato range (i.e., 5-8Hz). 

3.4 Emotion Classification 

Given the high number of features, ReliefF feature selec-

tion algorithms [31] were used to rank the better suited 

ones emotion classification. This algorithm outputs feature 

weights in the range of -1 to 1, with higher values indicat-

ing attributes more suited to the problem. This, in conjunc-

tion with the strategy described in Section 3.2, were used 

to reduce and merge baseline and novel features sets. 

For classification we selected Support Vector Machines 

(SVM) [42] as the machine learning technique, since it has 

performed well in previous MER studies. SVM parameters 

were tuned with grid search and a Gaussian kernel (RBF) 

was selected based on preliminary tests. The experiments 

were validated with 20 repetitions of 10-fold cross valida-

tion [43], where we report the average (macro weighted) 

results. 

4. RESULTS AND DISCUSSION 

In this section we discuss the results of our classification 

tests. Our main objective was to assess the relevance of 

existing audio features to MER and understand if and how 

our novel proposed ones improve the current scenario. 

With this in mind, we start by testing the existing baseline 

(standard) features only, followed by tests using the com-

bination of baseline and novel, to assess if the obtained re-

sults improve and if the differences are statistically signif-

icant. 

A summary of the classification results is shown in Ta-

ble 1. The baseline feature set obtained its best result, of 

71.7% F1-score, with an extremely high number of fea-

tures (800). Considering a more reasonable number of fea-

tures, up to the best 100 according to ReliefF, the best 

model used the top70, and attained 67.5%. Next, including 

novel features (with the baseline) increased the best result 

to 76.0% F1-score using the best 100 features, a consider-

ably lower number (100 instead of 800). This difference is 

statistically significant (at p < 0.01, paired T-test). Inter-

estingly, we observed decreasing results with models using 

higher number of features, indicating that those extra fea-

tures might not be relevant but introducing noise. 

 

Classifier Feature set # feats. F1-Score 

SVM baseline 70 67.5% ± 0.05 

SVM baseline 100 67.4% ± 0.05 

SVM baseline 800 71.7% ± 0.05 

SVM baseline+novel 70 74.0% ± 0.05 

SVM baseline+novel 100 76.0% ± 0.05 

SVM baseline+novel 800 73.5% ± 0.04 

Table 1. Results of the classification by quadrants. 

Of the 100 features used in the best result, 29 are novel, 

which demonstrates the relevance of adding novel features 

to MER. Of these, 8 are related with texture, such as the 

number of musical layers (MLmean), while the remaining 

21 are expressive techniques such as tremolo, glissando 

and especially vibrato (12). The remaining 71 baseline fea-

tures are mainly tone color related (50), with the few others 

capturing dynamics, harmony, rhythm and melody. 

Further analysis to the results per individual quadrant, 

presented in Table 2, gives us a deeper understanding 

about which emotions are harder to classify and where the 

new features were more significant. According to it, Q1 

and Q2 obtained a higher result compared to the remain-

ing. This seems to indicate that emotions in songs with 

higher arousal are easier to differentiate. Also, Q2 result is 

significantly higher, indicating that it might be markedly 

distinct from the remaining, explained by the fact that sev-

eral excerpts from Q2 belong to genres such as punk, hard-

core or heavy-metal, which have very distinctive, noise-

like, acoustic features. This goes in the same direction as 

the results obtained in previous studies [44]. 

 

 baseline novel 

Quads Prec. Recall F1-Score Prec. Recall F1-Score 

Q1 62.6% 73.4% 67.6% 72.9% 81.9% 77.2% 

Q2 82.3% 79.6% 80.9% 88.9% 82.7% 85.7% 

Q3 61.3% 57.5% 59.3% 73.0% 69.2% 71.1% 

Q4 62.8% 57.9% 60.2% 68.5% 68.6% 68.5% 

Table 2. Results per quadrant using 100 features. 

Several factors can be thought to explain the lower re-

sults in Q3 and Q4 (average of -11.7%). First, a higher 

number of ambiguous songs exist in these quadrants, con-

taining unclear or contrasting emotions. This is supported 
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by the low agreement (45.3%) between the subject’s and 

the original AllMusic annotations during the annotation 

process. In addition, the two quadrants contain songs 

which share similar musical characteristics, sometimes 

with each characteristic related to contrasting emotional 

cues (e.g., a happy melody and a sad voice or lyric). This 

agrees with the conclusions presented in [45]. As a final 

point, these similarities may explain why the subjects re-

ported having more difficulty distinguishing valence for 

songs with low arousal. 

The addition of novel features improved the results by 

8.6% when considering the top 100 features’ results. Novel 

features seemed more relevant to Q3, with the most signif-

icant improvement (by 11.8%), which was before the 

worst performing quadrant, followed by Q1 (9.6%). On the 

opposite end, Q2 was already the best performing with 

baseline features and thus is lower improvement (4.8%). 

In addition to assessing the importance of baseline and 

novel features for quadrants classification, where we iden-

tified 29 novel features in the best 100, we also studied the 

best features to discriminate each specific quadrant from 

the others. This was done by analyzing specific feature 

rankings, e.g., the ranking of features that are best to sepa-

rate Q1 songs from non-Q1 songs (a set containing Q2, Q3 

and Q4 annotated as non-Q1). As expected based on for-

mer tests, tone color is the most represented concept in the 

list of the 10 best features for each of the four quadrants. 

The reason is in part due to being overrepresented in orig-

inal feature set, while relevant features from other concepts 

may be missing.  

Of the four quadrants, Q2 and Q4 seem to have the most 

suited features to distinguish them (e.g., features to iden-

tify a clip as Q2 vs non-Q2), according to the obtained Re-

liefF weights. This was confirmed experimentally, where 

we observed that 10 features or less was enough to obtain 

95% of the max score in binary problems for Q2 and Q4, 

while the top 30 and 20 features, for Q1 and Q3 respec-

tively, were needed to attain the same goal. 
Regarding the first quadrant, some of the novel features 

related with musical texture information were shown to be 

very relevant. As an example, in the top features, 3 are 

novel, capturing information related with the number of 

musical layers and the transitions between different texture 

types, together with 3 rhythmic features related with events 

density and fluctuation. Q1 represents happy emotions, 

which are typically energetic. Associated songs tend to be 

high in energy and have appealing (“catchy”) rhythm. 

Thus, features related with rhythm, together with texture 

and tone color (mostly energy metrics) support this. Nev-

ertheless, as stated before the weight of these features to 

Q1 is low when compared with the top features of other 

quadrants.  

For Q2 the features identified as most suited are related 

with tone color, such as: roughness - capturing the disso-

nance in the song; rolloff – measuring the amount of high 

frequency; MFCCs – total energy in the signal; and spec-

tral flatness measure – indicating how noise-like the sound 

is. Other important features are related with dynamics, 

such as tonal dissonance. As for novel features, expressive 

techniques ones, mainly vibrato, which makes 43% of the 

top 30 features. Some research supports this association of 

vibrato and negative energetic emotions such as anger 

[46]. Generally, the associations found seem reasonable. 

After all, Q2 is made of tense, aggressive music, and mu-

sical characteristics like sensory dissonance, high energy, 

and complexity are usually present. 

Apart from tone color features (extracting energy infor-

mation), quadrant 3 is also identified higher level features 

from concepts such as musical texture, dynamics and har-

mony and expressive techniques. Namely, the number of 

musical layers, spectral dissonance, inharmonicity, and 

tremolos. As for quadrant 4, in addition to tone color fea-

tures related to spectrum (such as skewness or entropy) or 

measures of how noise-like is the spectrum (spectral flat-

ness), the remaining are again related with dynamics (dis-

sonance) and harmony, as well as some vibrato metrics. 

More and better features are needed to better understand 

and discriminate Q3 from Q4. From our tests, songs from 

both quadrants share some common musical characteris-

tics such as lower tempo, less musical layers and energy, 

use of glissandos and other expressive techniques. 

5. CONCLUSIONS AND FUTURE WORK 

We studied the relevance of musical audio features, pro-

posing novel features that complement the existing ones. 

To this end, the features available in known frameworks 

were studied and classified in one of eight musical con-

cepts - dynamics, expressive techniques, harmony, mel-

ody, musical form, musical texture, rhythm and tone color. 

Concepts such as musical form, musical texture and ex-

pressive techniques were identified as the ones most lack-

ing available audio extractors. Based on this, we proposed 

novel audio features to mitigate the identified gaps and 

break the current glass ceiling. Namely, related with ex-

pressive techniques, capturing information related with vi-

brato, tremolo, glissando and articulation. Also, related 

with musical texture, capturing statistics regarding the mu-

sical layers of a musical piece.  

Since no public available dataset fulfilled our needs, a 

new dataset with 900 clips and metadata (e.g., title, artist, 

genres and moods), annotated according to the Russell’s 

emotion model quadrants was built semi-automatically, 

used in our tests and is available to other researchers. 

Our experimental tests demonstrated that the novel pro-

posed features are relevant and improve MER classifica-

tion. As an example, using a similar number of features 

(100), adding our novel proposed features increased the re-

sults by 8.6% (to 76.0%), when compared to the baseline. 

This result was obtained using 29 novel features and 71 

baseline, which demonstrates the relevance of this work. 

Additional experiments were conducted to uncovered 

and better understand relations between audio features, 

musical concepts and specific emotions (quadrants). 

In the future, we would like to study multi-modal ap-

proaches and the relation between the voice signal and lyr-

ics, as well as testing the features influence in finer grained 

categorical and dimensional emotion models. Also, other 

features (e.g. related with musical form), are still to be de-

veloped. Moreover, we would like to derive a more under-

standable set of knowledge (e.g. rules) of how musical fea-

tures influence emotion, something that lacks when black-

box classification methods such as SVMs are employed. 
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