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ABSTRACT

Modeling the structure of musical pieces constitutes a cen-
tral research problem for music information retrieval, mu-
sic generation, and musicology. At the present, models of
harmonic syntax face challenges on the tasks of detecting
local and higher-level modulations (most previous models
assume a priori knowledge of key), computing connected
parse trees for long sequences, and parsing sequences that
do not end with tonic chords, but in turnarounds. This pa-
per addresses those problems by proposing a new genera-
tive formalism Probabilistic Abstract Context-Free Gram-
mars (PACFGs) to address these issues, and presents vari-
ants of standard parsing algorithms that efficiently enumer-
ate all possible parses of long chord sequences and to es-
timate their probabilities. PACFGs specifically allow for
structured non-terminal symbols in rich and highly flex-
ible feature spaces. The inference procedure moreover
takes advantage of these abstractions by sharing probabil-
ity mass between grammar rules over joint features. The
paper presents a model of the harmonic syntax of Jazz
using this formalism together with stochastic variational
inference to learn the probabilistic parameters of a gram-
mar from a corpus of Jazz-standards. The PACFG model
outperforms the standard context-free approach while re-
ducing the number of free parameters and performing key
finding on the fly.

1. INTRODUCTION

The modeling of non-local relations between musical ob-
jects such as notes and chords constitutes a central re-
search problem for music information retrieval, music gen-
eration, and music analysis. Hierarchical models express
these relations by assuming a latent hierarchical structure
[19,22–24,30,31]. Consider for example the Jazz chord se-
quence Am7 D7 G7 C4 where C4 denotes a major-seventh
chord. Since the first three chords form a II V I sequence
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with reference to G7 which is the dominant in C major,
they form a dominant phrase [24]. The dominant phrase as
a whole then refers to the tonic chord C4. All four chords
together thus form a tonic phrase.

Figure 1 presents a syntactic analysis of the A-part
of the Jazz-standard Afternoon in Paris following the ap-
proach from [22]. It illustrates the idea of how pieces can
be decomposed into hierarchically-structured constituents
which stand in part-whole relationship with one another.
Subdominant, dominant, and tonic phrases are denoted by
the scale degrees II, V, and I, respectively. Note that the
subsequence Cm7 F7 B[4 is both a tonic progression in
B[ major and a dominant progression in E[ major. It forms
a dominant phrase in A[ major together with B[m7 and
E[7.
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Figure 1. Hierarchical analysis of the A-part of the Jazz-
standard Afternoon in Paris.

Models of harmonic syntax similar to Figure 1 have
been successfully applied to melody harmonization [16],
chord inference from audio [5, 6], and harmonic similarity
[7]. There is also some empirical evidence for the psycho-
logical reality of hierarchical structures in music [15, 25].
While earlier theoretical and psychological work on hierar-
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chical models has provided important insight about musi-
cal structure, computational implementation of these mod-
els to date has been limited to relatively small datasets.
Earlier work includes applications to monophonic melodic
data [21], a corpus of 39 blues chord progressions with a
maximum of 24 chords per progression [12], or a dataset
of 76 chord progressions (avg. length 40) from Jazz-
standards that was restricted to subsequences of pieces that
did not change key [4]. All these earlier approaches as-
sume the knowledge of the key of the pieces a priori.

In computational linguistics, Context-Free Grammars
(CFGs) are a standard way of modeling hierarchical con-
stituent structure. They formalize constituent structures us-
ing rewrite rules denoted by long right arrows. The rule
X �! Y Z for example states that the constituent X con-
sists of the two constituents Y and Z. The existence of
natural language treebanks makes it possible to read off the
grammatical rewrite rules including their frequencies from
syntactical analyses by experts. At present, there are mu-
sic databases of simplified Schenkerian analyses [13], syn-
tactic analyses of melodies based on the generative theory
of tonal music [8], and annotated harmonic functions [4].
However, to the best of our knowledge there is currently
no dataset of hierarchically analyzed chord sequences by
human experts that could serve for the training or the eval-
uation of models of harmonic syntax. As a consequence,
there exist no comparisons of models of harmonic syntax
against expert analyses.

In the following, we introduce Abstract Context-Free
Grammars (ACFGs), a generalization of the CFG frame-
work designed to account for feature structures charac-
teristic of musical categories. A first model of Jazz har-
mony is proposed in this framework that covers full pieces
by incorporating modulations (i.e., changes in key). We
train the model in a semi-supervised fashion on a dataset
of Jazz-standards and evaluate it on a small set of hand-
annotated hierarchical analyses. We further propose a so-
lution for handling sequences that do not end with tonic
chords, but in turnarounds. Simulations demonstrate that
the ACFG model is able to outperform a PCFG model of
the dataset. The implementation of the algorithms devel-
oped in this study are publicly available as a package of the
Julia programming language [1]. 1

2. OVERVIEW OF THE APPROACH

While the CFG framework has proven invaluable in com-
putational linguistics, categories and part-whole relations
between musical constituents have properties not pos-
sessed by linguistic structures. Musical categories such as
scale degrees, for example, are equipped with an arithmetic
structure that corresponds to musical transposition.

In the following, we refer to context-free rules of the
form X �! Y X as a preparation of X by Y . The prepa-
ration of the scale degree VB[ by IIB[ in Afternoon in Paris
(see Figure 1) for example is a concrete realization of the
general principle that any category x

k

consisting of a scale

1 https://github.com/dharasim/GeneralizedChartParsing.jl

degree x and a key k can be prepared by an ascending dia-
tonic fifth (x+4 mod 7)

k

. [24]. In addition to facts such as
these, a framework for modeling musical structure has to
account for the fact that the musical categories and rewrite
rules are grouped into key-independent classes. For exam-
ple, both VB[ and VA[

are fifth scale degrees. The prob-
abilities of the application a rule to VB[ and VA[

should
therefore be related.

This paper introduces Abstract Context-free Grammars
(ACFGs), a modeling framework with a greater flexibility
than CFGs. In particular, in ACFGs constituent categories
are allowed to be of any data type and the rules are general-
ized partial functions. Unlike standard context-free rules,
ACFG rules can therefore take advantage of the algebraic
structure of categories. Probabilistic ACFGs extend prob-
abilistic CFGs with the ability to express a wider range of
probability distributions over rules.

3. ABSTRACT CONTEXT-FREE GRAMMARS

3.1 Definitions

Definition 1. A (non-probabilistic) Abstract Context-free
Grammar (ACFG) G = (T,C,C0,�) consists of a set T
of terminal symbols, a set C of constituent categories, a set
of start categories C0 ✓ C, and a set of partial functions

� := { r | r : C 7! (T [ C)

⇤ } ,

called rewrite rules or rewrite functions. The arrow 7! is
used throughout the paper to denote partial functions. A
sequence � 2 (T [ C)

⇤ can be generated in one step
from a sequence ↵ 2 (T [ C)

⇤ by the application of
a rewrite function r 2 �, denoted by ↵ �!

r

�, if
there exist ↵1,↵2 2 (T [ C)

⇤ and A 2 C such that
↵ = ↵1A↵2 and � = ↵1r(A)↵2. A sequence of rewrite
rules r1 . . . rn is called a derivation of a sequence of termi-
nals ↵ 2 T

⇤ if there exists a start category ↵1 2 C0, and
↵2, . . . ,↵n

2 (C [ T )

⇤ such that

↵1 �!
r1 ↵2 �!

r2 · · · �!
rn ↵,

where r

i

is always applied to the leftmost category of ↵
i

for i 2 { 1, . . . , n� 1 }. The set of derivations of ↵ is
denoted by D(↵). The language of the grammar G is the
set of terminal sequences that have a derivation in G.

Note that if C is finite, the languages that can be de-
scribed by ACFGs are exactly the languages that can be
described by standard context-free grammars (CFGs). For
each ACFG with finite C, a CFG with rule set R can be
constructed by dividing each rewrite function with domain
cardinality k into k standard context-free rewrite rules,

R :=

[

r2�

{ (A,↵) 2 C ⇥ (T [ C)

⇤ | r(A) = ↵ } .

Definition 2. A Probabilistic Abstract Context-free Gram-
mar (PACFG) is an ACFG where each category A 2 C is
associated with a random variable X

A

over rewrite func-
tions r such that P(X

A

= r) is positive if and only if r(A)
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is defined, that is A is in the domain of r, A 2 dom(A).
The probability p(d) of a derivation d = r1 . . . rn of a se-
quence of terminal symbols ↵ 2 T

⇤ is defined as the prod-
uct

Q
n

i=1 P(XAi = r

i

) where in each step r

i

is applied to
a category A

i

2 C. The probability of ↵ is then defined as
p(↵) =

P
d2D(↵) p(d).

Note that PACFG categories can share the same proba-
bility distribution over rewrite functions without rewriting
to exactly the same right-hand sites. This important prop-
erty allows us to model the structural relations between
musical keys. We use this property in Section 4 to build
a model that abstract chords sequences from their concrete
scale by defining the probability that a rewrite function is
applied to a scale degree independently of its key. The
sharing of probability mass between rules additionally re-
duces the number of free parameters of a PACFG model.

To illustrate the different learning capabilities of PCFG
and PACFG models, consider a toy PCFG with nonter-
minal symbols C = {S,A,B }, start symbol S, ter-
minal symbols T = { a, b }, and rules S �! A | B,
A �! A A | a, and B �! B B | b. The grammar thus
generates sequences that solely consist either of as or bs.
In a classical PCFG setting, no probability mass is shared
between rules, but each rule has its separate probability.
However, in the process of inferring the probabilities of
the rules from data, it might be desirable to generalize the
rules A �! AA and B �! B B to a meta rule x �! x x

where x 2 {A,B } and to put probability mass on this ab-
stract entity. In that way, the grammar can learn something
about A �! A A when it observes B �! B B and vice
versa. The PACFG version of the PCFG presented above
addresses the problem by replacing the classical context-
free rules by the partial functions r1, r2, r3, r4, and r5 with
r1(S) = A, r2(S) = B, r3(x) = x x for x 2 {A,B },
r4(A) = a, and r5(B) = b. Analogously, a PACFG of
Jazz chord sequences can generalize classical rewrite rules
so that their probabilities do not depend on the keys of their
left-hand sides to model transpositional invariance.

3.2 Parsing

Parsing a sequence of terminal symbols with respect to a
formal grammar is the task of computing the distribution
of parse trees conditioned on this sequence. Many parsers
are based on versions of the CYK algorithm that assumes
grammars to be given in Chomsky normal form. Since
grammar transformations into Chomsky normal form con-
siderably blow up the grammar, the here presented parser
transforms grammars on the fly during parsing, similar
to the transformation presented in [18]. Each rule of the
form A �! B1 . . . Bk

is transformed into a set of states
s

i

= B1 . . . Bi

for 1  i  k, a transition function

tran : S ⇥ (T [ C) ! S, tran(s

i

, B

i+1) = s

i+1

and a completion function comp : S ! 2

C such that
{A } ✓ comp(s

k

), where S denotes the set of all states.
Note that the states and the transition function form a
search trie where the completion function checks if there

items: edges [s, i, j] for s 2 S

constituents [A, i, j] for A 2 C

for and i, j 2 {1, . . . , |↵|+ 1}

goal items: [A, 1, |↵|+ 1] for A 2 S

axioms:
[↵

i

, i, i+ 1]

for i 2 {1, . . . , |↵|}

introduce edge:
[A, i, j]

[s, i, j]

s = tran(s0, A)

complete edge:
[s, i, j]

[A, i, j]

A 2 comp(s)

fundamental rule:
[s, i, j] [A, j, k]

[s

0
, i, k]

tran(s,A) = s

0

Figure 2. Description of the parsing algorithm in the pars-
ing as deduction framework. Existing Constituents can
start the parser to read a sequence of terminal symbols and
categories by the introduce edge rule. The fundamental
rule is then recursively applied to extend these sequences.
The complete edge rule eventually merges sequences to
single constituents if they are the right-hand side of a gram-
mar rule.

is a rewrite rule that has a sequence of terminal symbols
and categories as its right-hand side. This trie data struc-
ture leads to a compact representation of the forest of all
trees for a given input sequence. More generally, the parser
can handle any transition and completion functions derived
from finite-state automata, see [14].

In the following, a generic bottom-up parsing algorithm
for abstract grammars is presented in the parsing as de-
duction framework using the above defined transition and
completion functions [3, 29]. The parsing as deduction
framework is a meta-formalism to state and compare dif-
ferent parsing algorithms. It views the parses of a sequence
as logical deductions of goals from axioms by using con-
stituents as atomic logical formulas. The formula [IB[, 2, 5]

for example states the existence of a constituent with cate-
gory IB[ that spans over the second, third, and fourth termi-
nal symbol. This formula is true in the analysis presented
in Figure 1 because that analysis contains a constituent
with label IB[ over the span from the second to the forth
leaf chord. The goals are constituents that span the full
sequence and come from the set of start categories. The
axioms are formulas of the form [t

i

, i, i + 1] for each ter-
minal in the input sequence t1 . . . tn. The parsing strategy
such as bottom-up parsing or Earley parsing is encoded in
the deduction rules. These rules are denoted by a set of
atomic formulas over a horizontal line, an atomic formula
under this line, and an optional side condition (see Figure
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2). The formula under the line can be deduced from the
formulas above if the side condition holds.

The proposed algorithm makes use of two different
kinds of atomic formulas: edges (not yet completed con-
stituents) and constituents. A state s 2 S together with a
start index i and an end index j is called an edge and de-
noted by [s, i, j]. Analogously, a category A 2 C together
with start and end indices i and j is called a constituent
and denoted by [A, i, j]. Figure 2 shows the axioms, goal
items, and the deduction rules of our algorithm.

3.3 Inference of Rule Probabilities

In this section, we give an overview of an inference algo-
rithm for the rule probabilities P(X

A

= r). Let �
A

=

{ r 2 � | A 2 dom(r) } be the set of rewrite functions
whose domain contains the constituent category A. We
place a Dirichlet distribution on the probability vector de-
scribing the distribution over �

A

, ~✓�A ⇠ Dirichlet(~↵�A)

for pseudocount vector ~↵�A . The inference problem is to
compute the posterior distribution over this set of probabil-
ity vectors, given the data D and pseudocounts {~↵�A},

p({~✓�A} | D, {~↵�A}) / p(D | {~✓�A})p({~✓�A} | {~↵�A}),

where { ~

✓�A} is an abbreviation for { ~

✓�A}A2C

, etc. Varia-
tional Bayesian inference (VB) is used to approximate this
posterior distribution [2, 11, 32]. We introduce an approx-
imating variational distribution q({~✓�A} | {~⌫�A}) with
variational parameters {~⌫�A} over our target hidden vari-
ables (rule weights) and minimize the Kullback-Leibler di-
vergence between this approximation and the true poste-
rior,

DKL(q({~✓�A} | {~⌫�A}) || p({~✓�A} | D, {~↵�A})),

by adjusting the variational parameters {~⌫�A}.
Following [17], we approximate the distribution over

each probability vector with a Dirichlet distribution
~

✓�A | ~⌫�A ⇠ Dirichlet(~⌫�A), and make use of the mean-
field approximation

q({~✓�A} | {~⌫�A}) =
Y

A2C

p(

~

✓�A | ~⌫�A).

We minimize the Kullback-Leibler divergence with a
coordinate descent algorithm similar to the expectation-
maximization algorithm. First, we compute the expec-
tation of the counts of rule usages in the data under our
current setting of the variational parameters, E

q

[#(r,D)]

where #(r,D) is the number of times that rule r was used
to generate the data D, and then we update our varia-
tional parameters based on these expectations. Since all
of our distributions are in the exponential family, it can
be shown that the optimal update is given by the equation
ˆ

~⌫�A = ~↵�A + E
q

[#(r,D)] [2]. In other words, we set the
pseudocounts of our variational distributions equal to the
expected number of rule usages plus the pseudocount for
each rule in the prior distribution.

Under the standard coordinate-ascent algorithm given
in [17], expected counts must be computed for the whole

corpus before updating using the equation above. Hoff-
man et al. [9] propose a stochastic variant of the standard
variational (inspired by stochastic gradient descent) where
updates are computed with respect to randomly sampled
minibatches of the data. We make use of this stochastic
variational Bayes algorithm in the results reported below.

4. A GENERATIVE MODEL OF JAZZ HARMONY

This section presents a PACFG G = (T,C,C0,�) that
models the syntax of Jazz harmony following the pro-
posal in [24]. That work addressed the problem of find-
ing a restrictive grammar that describes the full variety of
syntactic relations in the musical idiom of Jazz-standards.
The set of terminal symbols T is a set of pairs describing
chords each of which consists of the root of the chord and
a string describing the chord form—one of: a major triad,
a major-seventh chord, a major sixth chord, a dominant-
seventh chord, a minor triad, a minor-seventh chord, a half-
diminished-seventh chord, a diminished seventh-chord, an
augmented triad, or a suspended chord.

In the following, Z
n

denotes the ring of integers mod-
ulo n 2 N. The categories are modeled as pairs of scale
degrees and keys, C = Z7 ⇥ K, where a key consists of
a pitch class representing its root and a string describing
its mode, K = Z12 ⇥ {major,min }. Scale degrees are
denoted by roman numerals from I to VII. All categories
with scale degree I are start symbols, C0 = { I }⇥K. Let
k 2 K denote an arbitrary key. The set of rewrite functions
� consists of prolongation,

PROLONG(hx, ki) = hx, ki hx, ki

for x 2 Z7, diatonic preparation,

DIAT-PREP(hx, ki) = hx+ 4 mod 7, ki hx, ki

for x 2 Z7 \ { IV }, dominant preparation,

DOM-PREP(hx, ki) = hV, µ(x, k)i hx, ki

for x 2 Z7 \ { I } where µ(x, k) denotes the modulation
from k into the key of scale degree x (e.g. µ(II, (0,maj)) =
(2,min), the key of the second scale degree of C major is
D minor), plagal preparation,

PLAGAL-PREP(hI, ki) = hIV, ki hI, ki,

modulation,

MODULATION(hx, ki) = hI, µ(x, k)i,

mode change,

MODE-CHANGE(hI, (r,m)i) =
(
hI, (r,min)i, if m = maj
hI, (r,maj)i, if m = min,

for r 2 Z12,m 2 {maj,min }, diatonic substitution,

DIAT-SUBST(hx, (r,m)i) =

8
>>><

>>>:

hVI, (r,m)i, if x = I,m = maj
hIII, (r,m)i, if x = I,m = min
hIV, (r,m)i, if x = II
hVII, (r,m)i, if x = V
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Figure 3. Parsing the turnaround of All of me

for x 2 { I, II,V } , r 2 Z12,m 2 {maj,min }, and domi-
nant substitution,

DOM-SUBST
i

(hV, (r,m)i) = hV, (r + i mod 12,m)i

for r 2 Z12, m 2 {maj,min }, and i 2 { 3, 6, 9 }.
Additionally, � contains appropriate termination rules
C 7! T according to standard Jazz harmony theory (e.g.
seventh-chord-termination(h4, (0,maj)i) = G7, see [20]
for further explanation). The distribution of Xhx,ki over
rules rewriting the category hx, ki is defined as a categori-
cal distribution such that P(Xhx,ki = r) = P(Xhx,k0i = r)

for all scale degrees x, rules r, and keys k, k0 that have the
same mode. That is, the probability of r rewriting hx, ki
does not depend on the root of k which enables the model
to learn the parameters of its probability distributions key-
independently.

These grammar rules can be grouped into three classes:
the prolongation rule, preparation rules, and substitution
rules. Preparation rules create categories that for the lis-
tener generate the expectation to hear the prepared chord.
Substitution rules substitute chords for other chords that
fulfill an equivalent function inside the sequence such as
tritone substitutions of dominants in Jazz.

5. THE TURNAROUND PROBLEM

A lead-sheet of a Jazz-standard consists of a melody to-
gether with a chord sequence describing the fundamental
harmonic structure of the piece. The chord sequence is re-
peated multiple times in a performance. While some lead-
sheets end with tonic chords, others include harmonic up-
beats to the first chord of the piece at the end of the sheet,
called turnarounds. The final chord of a performances is
nevertheless usually a tonic chord. The lead-sheet of the
Jazz-standard All of me starts for example with a C4 chord
and ends with the turnaround E[�7 Dm7 G7.

The grammar of Jazz harmony proposed above assumes
that pieces end with a tonic chord. Therefore, a simple im-
plementation of this grammar would not able to parse lead-
sheets that end in turnarounds. We solve this problem by
cyclic parsing, meaning that we assume that constituents
can have spans from the end of a piece back to the begin-
ning, see Figure 3.

Figure 4. Tree accuracy plot

6. EXPERIMENTS

6.1 Dataset

The model is evaluated using the iRealPro dataset of Jazz-
standards. 2 This dataset consists of 1173 chord sequences
electronically-encoded by the Jazz musician community
including metadata such as the titles, composers, and keys.
The sequences were collected and converted into the Hum-
drum format [10] by Daniel Shanahan and Yuri Broze [28],
and are available online. 3 For other research that uses
this dataset see [26, 27]. The chord forms in the iRealPro
dataset include information about nineths and elevenths
that are not considered in this study.

The subset of 394 Jazz-standards that consist of at most
40 chords was considered to train the models. 34.52%
(136) of these pieces were parsable using the standard
approach and 90.61% (357) pieces were parsable using
the cyclic parsing approach described above. Less then
55% of the considered Jazz-standards therefore end in
turnarounds.

6.2 Tree Accuracy Evaluation

We compare four models: (i) the proposed PACFG model
that uses a representation of rules independent of key,
(ii) its PCFG counterpart the rules of which are not in-
dependent of key, (iii) a baseline of randomly generated
trees, and (iv) a right-branching baseline in which all con-
stituents split into a constituent on the left and a terminal
symbol on the right.

The models are trained on the 357 cyclic parsable se-
quences using minibatches of 8 sequences. They are eval-
uated on 13 pieces hand-annotated by the authors. We re-
port the predicted tree accuracy. That is the precision of
correctly predicted spans of internal tree nodes. A span of
a tree node is defined as the start index of its leftmost leaf
together with the end index of its rightmost leaf.

Figure 4 shows the means of the tree accuracies includ-
ing 95% confidence intervals as error bars. The right-
branching baseline performs at an accuracy level under
10%. The random baseline performs slightly better at an

2 https://irealpro.com
3 https://musiccog.ohio-state.edu/home/index.php/iRb Jazz Corpus
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Figure 5. Predicted tree accuracy for each minibatch up-
date. Note that the y-axis displays only values between
33% and 50%.

accuracy level of 15.35% Under a uniform prior, both the
PACFG and the PCFG model perform at an accuracy level
of 36.30% a priori of the data. As opposed to the trained
PCFG model that only improves its performance by about
3% (in comparison to the uniform prior) reaching an ac-
curacy of 39.43%, the trained PACFG model improves by
about 10% (in comparison to the uniform prior) reaching
an accuracy of 45.95%. The PACFG model was thus able
to learn more from the data than the PCFG model. Note
that since the PCFG model does not abstract the grammar
rules from the concrete key wherein they are applied, the
number of free parameters of the PCFG model is approxi-
mately 12 times higher than the number of free parameters
of the APCFG model.

Despite the fact that the PACFG model learns key-
independently, it is still much simpler than models that
produce state-of-the-art parsing results in computational
linguistics. In particular, state-of-the-art models in com-
putational linguistics typically make use of conditioning
information beyond the parent constituent categories used
in the PACFG model—such as larger tree fragments, con-
ditioning on heads and/or adjacent elements in the string,
state-splitting, and other richer contextual information. We
anticipate that the inclusion of similar structures into mu-
sical parsing models will lead to similar improvements in
performance.

Figure 5 shows the mean predicted tree accuracies of
the PACFG and the PCFG models for each minibatch up-
date. Note that this figure is produced using a stochastic
algorithm and is therefore inherently noisy. We see that
the stochasticity of the inference algorithm leads to ran-
dom jumps of the accuracy up to 0.5%. The models appear
to do most of their learning in the first 10 minibatches.

6.3 Performance Diagnosis using Scale Degree
Frequencies

Figure 6 shows the expected frequency of scale-degree use
in the whole corpus. The scale degrees VI in major and
III in minor are more frequently used by the model than
expected. Because these scale degrees are substitutions for
the first scale degrees and because they enable modulations

Figure 6. Expected usage of scale degrees to parse the full
training dataset

into the relative key (e.g. from C major to A minor and vice
versa), the model may be using them to alternate between
relative keys. The prominence of the VII in minor keys is
probably related to the fact that it has a dominant-seventh
chord form. The model may be interpreting a I in major as
a III in the relative minor key that is then prepared by the
VII in minor. For example, the simple chord transition G7

C4 would in this case be derived by

I
a

�! III
a

�! VII
a

III
a

�! G7 III
a

�! G7 C4
.

7. CONCLUSION AND FUTURE RESEARCH

The research presented here introduced a new general
grammar and parsing framework tailored to the needs of
music and showed how to perform inference for such a
model.

Experiments show that in contrast to standard context-
free models, the proposed model is able to learn character-
istic structures of the observed data. To the best of our
knowledge, this is the first computational approach that
automatically performs hierarchical analyses of chord se-
quences and evaluates them on analyses by human experts.

This paper lays the groundwork for more advanced
models of harmonic syntax. Our future research will
in particular focus on expanding the dataset of hand-
annotated expert analyses to provide significance tests of
the performance comparison of different models, for ex-
ample. Further studies can use the tools developed here
to build models of unsupervised grammar induction, joint
models of multiple musical levels of musical structure like
harmony and rhythm, and models of musical structure that
have more complex dependencies than those representable
in simple tree structures.
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