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ABSTRACT

The majority of state-of-the-art methods for music infor-
mation retrieval (MIR) tasks now utilise deep learning
methods reliant on minimisation of loss functions such as
cross entropy. For tasks that include framewise binary
classification (e.g., onset detection, music transcription)
classes are derived from output activation functions by
identifying points of local maxima, or peaks. However, the
operating principles behind peak picking are different to
that of the cross entropy loss function, which minimises the
absolute difference between the output and target values
for a single frame. To generate activation functions more
suited to peak-picking, we propose two versions of a new
loss function that incorporates information from multiple
time-steps: 1) multi-individual, which uses multiple indi-
vidual time-step cross entropies; and 2) multi-difference,
which directly compares the difference between sequential
time-step outputs. We evaluate the newly proposed loss
functions alongside standard cross entropy in the popular
MIR tasks of onset detection and automatic drum tran-
scription. The results highlight the effectiveness of these
loss functions in the improvement of overall system ac-
curacies for both MIR tasks. Additionally, directly com-
paring the output from sequential time-steps in the multi-
difference approach achieves the highest performance.

1. INTRODUCTION

At present, the state-of-the-art systems for many music in-
formation retrieval (MIR) tasks utilise deep learning mod-
els. Within the domain of dynamic time-series MIR tasks
such as onset detection and music transcription, solutions
are achieved through a binary classification of each time-
step t. A binary classification output is typically limited to
a range of [0,1] using a non-linear function (e.g., sigmoid,
softmax). For classification purposes the output is subse-
quently rounded to either 0 or 1. However, in framewise
binary classification tasks using this approach has proven
to be less effective [7]. In the example presented in Fig-
ure 1, a framewise output activation function ỹ is shown in
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Figure 1. A true positive is missed using the rounding
approach, but is successfully selected through peak picking
(circled point). The solid line denotes the output, the dotted
line the target, the dashed line the 0.5 rounding threshold
and the dash-dotted line the peak-picking threshold.

which the values ideally associated with a class label (i.e.,
value) of 1 do not exceed 0.5. While ỹ clearly shows the
presence of an event as a peak, it would be identified as a
false negative (ỹt < 0.5).

1.1 Peak Picking

To overcome the problem posed in Figure 1, the majority of
framewise binary classification systems utilise peak pick-
ing, which differentiates between classes by identifying lo-
cal maxima. Multiple peak-picking approaches have been
proposed in the literature [1,4,12,16] and follow a general
process as shown in Figure 1. Here, a point is selected as a
peak if it is the maximum value within a local window and
above a threshold τ . In [16] the threshold is determined
by calculating the mean of a window, controlled using δ,
a user determined constant λ and maximum and minimum
values (tmax and tmin).

τ t = mean(ỹt−δ : ỹt+δ) ∗ λ (1)

τ t =

{
tmax, τ > tmax
tmin, τ < tmin

(2)
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An onset classification vector O is achieved by determin-
ing if each time-step of ỹ is the maximum value within the
surrounding number of frames, set using Ω, and above the
threshold τ :

Ot =

{
1, ỹt == max(ỹt−Ω : ỹt+Ω) & ỹt > τ t

0, otherwise.
(3)

1.2 Loss Functions

The overall loss (often referred to as the cost) L represents
the error of a system within a single value. It is calculated
by comparing the difference between the desired ground
truth y and the actual output ỹ [10]. Within audio based
time-step classification tasks it is calculated by taking the
mean of the individual time-step losses lt:

L =
1

T

T∑
t=1

lt. (4)

L is a component of back propagation (and truncated back
propagation) which is used to calculate the gradients G
used in updating the trainable parameters of the model Θ
with learning rate µ.

Θ← Θ− µ · G (5)

Commonly used loss functions for calculating lt include
mean squared error (MS) (eq. 6) and cross entropy (CE)
(eq. 7) [5].

ltms{yt, ỹt} = (yt − ỹt)2 (6)

ltce{yt, ỹt} = yt log (ỹt) + (1− yt) log (1− ỹt) (7)

Both of these loss functions are suited to differentiating
between binary classes using rounding as they aim to min-
imise the absolute difference between the targets y and
the output ỹ. In the majority of MIR tasks CE is more
suited than MS due to its greater penalization of large er-
rors [14, 16, 22].

1.3 Motivation

In the peak-picking process, multiple frames are utilized
in both the calculation of a threshold as well as the peak
selection. However, in the MS and CE calculations only the
current time-step t is used in measuring the difference be-
tween the target y and output ỹ. In order for the loss to
reflect peak salience (i.e., the clarity of the local maxima)
and to ensure that the output activation function is suit-
able for peak-picking, then multiple time-steps should be
included within the loss function calculation. To this end,
we propose two versions of a new loss function which not
only measures the absolute difference between y and ỹ, but
also allows for peak salience to be maintained. We then
evaluate the worth of these functions within the tasks of
onset detection and automatic drum transcription (ADT).

The remainder of this paper is structured as follows:
Section 2 presents the proposed loss functions and Section

3 gives an overview of the evaluation. The results and dis-
cussion are presented in Section 4 and the conclusions and
future work are presented in Section 5.

2. METHOD

For a loss function to represent an understanding of peak
salience, it must include at least three points: ỹt−1 : ỹt+1.
We propose combining CE and a peak salience measure
into a single loss function termed peakiness cross entropy
(PCE):

ltpce =
1

2

(
γltce{yt, ỹt}+ (1− γ)(ltp + ltf )

)
, (8)

where the first part of the equation is the standard cross
entropy (CE) of the current time-step t. The second part
of the function is a peak salience measure that consists of
two variables: lp, which focuses on the previous time-step
and lf , which focuses on the future (t + 1) time step. γ is
used to control the weighting between standard CE and the
peakiness measure. We propose two methods for achieving
lp and lf : a combination of multiple individual time-step
calculations and a direct comparison of the differences be-
tween multiple time-steps.

2.1 Multi-individual

The multi-individual (MI) method calculates lp and lf as
individual time step cross entropies of previous and future
time-steps:

ltp = ltce{yt−1, ỹt−1} (9)

ltf = ltce{yt+1, ỹt+1}. (10)

This ensures that updates to ỹt do not cause greater nega-
tive updates to ỹt−1 and ỹt+1.

2.2 Multi-difference

Although MI utilizes multiple time-steps it does not com-
pare absolute differences between sequential time-steps.
To achieve this, we propose an additional calculation of
lp and lf , termed multi-difference (MD), which measures
the absolute differences between sequential time-steps of
the target y and the output ỹ. The first version of MD (MMD),
utilizes MS. The second version (WMD) utilizes an updated
version of the CE equation, termed weighted cross entropy
(WCE):

ltwce{yt, ỹt} = (1−φ)yt log (ỹt)+φ(1−yt) log (1− ỹt),
(11)

which allows the strength of each half of the equation to
be controlled using the weighting parameter φ. The first
half of the WCE equation (henceforth referred to as WCE-FN)
aims to reduce false negatives by producing a loss value
proportional to the difference between sequential time-
steps of yt and ỹt. The second half of the WCE equation
(hereafter termed WCE-FP) aims to suppress false positives
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Figure 2. Example activation function scenarios with corresponding loss values output from each loss function. From
left to right: a raised true positive (RTP), a flat line false negative (FFN), a large false positive (LFP), a small raised false
positive (SFP) and a raised flat line (RFL).

as it outputs a larger value if there is a large undesirable
difference between sequential frames. ltp and ltf in MMD and
WMD are calculated respectively using:

ltp =

{
ltwce{|yt − yt−1|, |ỹt − ỹt−1|}, WMD,
ltms{|yt − yt−1|, |ỹt − ỹt−1|}, MMD,

(12)

ltf =

{
ltwce{|yt − yt+1|, |ỹt − ỹt+1|}, WMD,
ltms{|yt − yt+1|, |ỹt − ỹt+1|}, MMD.

(13)
Truncated back propagation is used to calculate the gradi-
ents for all loss functions. The presented implementation
utilises the automatic differentiation functions built into
the Tensorflow 1 library for this purpose.

2.3 Example Loss Function Scenarios

Figure 2 presents five example activation function sce-
narios. The loss values achieved by CE, MI, MMD, WMD
and the two separated halves of WMD: WMD-FN (φ = 0)
and WMD-FP (φ = 1), are presented with γ = 0.5. The
targets are presented at the top and the output activation
function on the bottom. It is worth noting that all of
the loss functions that utilize CE can be directly com-
pared but MMD is relative to itself (i.e., the MMD values
might seem small relative to the other loss values but
not relative to other values of MMD). If all frames of the
output are correct then all of the loss functions output zero.

(a) Reduced true positive: The first example shows
a reduced true positive where the surrounding frames are
correct. In this case CE and WMD output the largest values
as this peak could fall below the peak-picking threshold.

1 https://www.tensorflow.org

(b) Flat line false negative: The second example
shows a false negative where the output is a flat line. In
this case high relative error values are given by all of
the loss functions, however larger error values are given
by MMD and especially the FN suppression half of WMD.
This example would generally not be selected during
peak-picking.

(c) Large false positive: The third example shows a
false positive where the surrounding frames are correct.
In this case high values are given by CE, MMD and the
false positive suppression part of WMD, as this would be an
incorrectly selected peak.

(d) Small raised false positive: The fourth example
again shows a false positive, similar to the previous
example, but the surrounding frames are raised resulting
in a less salient false positive. In this case lower values
are given by MI and WMD-FP, than CE, as this peak is not
as salient as the one in example three (i.e., large false
positive).

(e) Raised flat line: The final example presents a
raised flat line. In this case the MMD and WMD loss functions
penalize less than CE and MI. While the absolute values
are slightly wrong, the difference between the sequential
frames is correct, resulting in no peaks being correctly
chosen.

3. EVALUATION

To identify whether the new loss functions improve per-
formance, we compare the newly proposed loss functions
against standard cross entropy (CE) in two common MIR
tasks: onset detection (OD) and automatic drum transcrip-
tion (ADT). To ensure performance trends are consistent
with different systems, we implement four neural network
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