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ABSTRACT

This study borrows and extends probabilistic language
models from natural language processing to discover the
syntactic properties of tonal harmony. Language models
come in many shapes and sizes, but their central purpose is
always the same: to predict the next event in a sequence
of letters, words, notes, or chords. However, few stud-
ies employing such models have evaluated the most state-
of-the-art architectures using a large-scale corpus of West-
ern tonal music, instead preferring to use relatively small
datasets containing chord annotations from contemporary
genres like jazz, pop, and rock.

Using symbolic representations of prominent instru-
mental genres from the common-practice period, this study
applies a flexible, data-driven encoding scheme to (1)
evaluate Finite Context (or n-gram) models and Recur-
rent Neural Networks (RNNs) in a chord prediction task;
(2) compare predictive accuracy from the best-performing
models for chord onsets from each of the selected datasets;
and (3) explain differences between the two model archi-
tectures in a regression analysis. We find that Finite Con-
text models using the Prediction by Partial Match (PPM)
algorithm outperform RNNs, particularly for the piano
datasets, with the regression model suggesting that RNNs
struggle with particularly rare chord types.

1. INTRODUCTION

For over two centuries, scholars have observed that tonal
harmony, like language, is characterized by the logical
ordering of successive events, what has commonly been
called harmonic syntax. In Western music of the common-
practice period (1700-1900), pitch events group (or co-
here) into discrete, primarily tertian sonorities, and the
succession of these sonorities over time produces mean-
ingful syntactic progressions. To characterize the passage
from the first two measures of Bach’s “Aus meines Herzens
Grunde”, for example, theorists and composers developed
a chord typology that specifies both the scale steps on
which tertian sonorities are built (Stufentheorie), and the
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Figure 1. Bach, “Aus meines Herzens Grunde”, mm. 1–2;
from the Riemenschneider edition, No. 1. Key and Roman
numeral annotations appear below.

functional (i.e., temporal) relations that bind them (Funk-
tionstheorie). Shown beneath the staff in Figure 1, this Ro-
man numeral system allows the analyst to recognize and
describe these relations using a simple lexicon of symbols.

In the presence of such language-like design features,
music scholars have increasingly turned to string-based
methods from the natural language processing (NLP) com-
munity for the purposes of pattern discovery [6], classifi-
cation [7], similarity estimation [18], and prediction [19].
In sequential prediction tasks, for example, probabilistic
language models have been developed to predict the next
event in a sequence — whether it consists of letters, words,
DNA sequences, or in our case, chords.

Although corpus studies of tonal harmony have become
increasingly commonplace in the music research commu-
nity, applications of language models for chord prediction
remain somewhat rare. This is likely because language
models take as their starting point a sequence of chords,
but the musical surface is often a dense web of chordal and
nonchordal tones, making automatic harmonic analysis a
tremendous challenge. Indeed, such is the scope of the
computational problem that a number of researchers have
instead elected to start with a particular chord typology
right from the outset (e.g., Roman numerals, figured bass
nomenclature, or pop chord symbols), and then identify
chord events using either human annotators [3], or rule-
based computational classifiers [25]. As a consequence,
language models for tonal harmony frequently train on rel-
atively small, heavily curated datasets (< 200, 000 chords)
[3], or use data augmentation methods to increase the size
of the corpus [15]. And since the majority of these corpora
reflect pop, rock, or jazz idioms, vocabulary reduction is
a frequent preliminary step to ensure improved model per-
formance, with the researcher typically including specific
chord types (e.g., major, minor, seventh, etc.), thus ignor-
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ing properties of tonal harmony relating to inversion [15]
or chordal extension [11].

Given the state of the annotation bottleneck, we propose
a complementary method for the implementation and eval-
uation of language models for chord prediction. Rather
than assume a particular chord typology a priori and train
our models on the chord classes found therein, we will in-
stead propose a data-driven method for the construction of
harmonic corpora using chord onsets derived from the mu-
sical surface. It is our hope that such a bottom-up approach
to chord prediction could provide a springboard for the im-
plementation of chord class models in future studies [2],
the central purpose of which is to use predictive methods
to reduce the musical surface to a sequence of syntactic
progressions by discovering a small vocabulary of chord
types.

We begin in Section 2 by describing the datasets used
in the present research and then present the tonal encod-
ing scheme that reduces the combinatoric explosion of po-
tential chord types to a vocabulary consisting of roughly
two hundred types for each scale-degree in the lowest in-
strumental part. Next, Section 3 describes the two most
state-of-the-art architectures employed in the NLP com-
munity: Finite Context (or n-gram) models and Recurrent
Neural Networks (RNNs). Section 4 presents the experi-
ments, which (1) evaluate the two aforementioned model
architectures in a chord prediction task; (2) compare pre-
dictive accuracy from the best-performing models for each
dataset; (3) attempt to explain the differences between the
two models using a regression analysis. We conclude in
Section 5 by considering limitations of the present ap-
proach, and offering avenues for future research.

2. CORPUS

This section presents the datasets used in the present re-
search and then describes the chord representation scheme
that permits model comparison across datasets.

2.1 Datasets

Shown in Table 1, this study includes nine datasets of
Western tonal music (1710–1910) featuring symbolic rep-
resentations of the notated score (e.g., metric position,
rhythmic duration, pitch, etc.). The Chopin dataset con-
sists of 155 works for piano that were encoded in Mu-
sicXML format [10]. The Assorted symphonies dataset
consists of symphonic movements by Beethoven, Berlioz,
Bruckner, and Mahler that were encoded in MATCH for-
mat [26]. All other datasets were downloaded from the
KernScores database in MIDI format. 1 In total, the
composite corpus includes the complete catalogues for
Beethoven’s string quartets and piano sonatas, Joplin’s
rags, and Chopin’s piano works, and consists of over 1,000
compositions containing more than 1 million chord tokens.

1 http://kern.ccarh.org/.

Composer Genre Npieces N tokens N types

Bach Chorale 370 35,237 786
Haydn Quartet 210 159,579 1472
Mozart Quartet 82 78,201 1289
Beethoven Quartet 70* 132,896 1699
Mozart Piano 51 92,279 833
Beethoven Piano 102* 176,370 1332
Chopin Piano 155* 147,827 1790
Joplin Piano 47* 43,848 854
Assorted Symphony 29 147,549 2420

Total 1116 1,013,786 2590

Note. * denotes the complete catalogue.

Table 1. Datasets and descriptive statistics for the corpus.

2.2 Chord Representation Scheme

To derive chord progressions from symbolic corpora using
data-driven methods, music analysis software frameworks
typically perform a full expansion of the symbolic en-
coding, which duplicates overlapping note events at every
unique onset time. Shown in Figure 2, expansion identifies
9 unique onset times in the first two measures of Bach’s
chorale harmonization, “Aus meines Herzens Grunde.”

Previous studies have represented each chord accord-
ing to the simultaneous relations between its note-event
members (e.g., vertical intervals) [23], the sequential re-
lations between its chord-event neighbors (e.g., melodic
intervals) [6], or some combination of the two [22]. For
the purposes of this study, we have adopted a chord typol-
ogy that models every possible combination of note events
in the corpus. The encoding scheme consists of an ordered
tuple (S, I) for each chord onset in the sequence, where S
is a set of up to three intervals above the bass in semitones
modulo the octave (i.e., 12), resulting in 133 (or 2197) pos-
sible combinations; 2 and I is the chromatic scale degree
(again modulo the octave) of the bass, where 0 represents
the tonic, 7 the dominant, and so on.

Because this encoding scheme makes no distinction be-
tween chord tones and non-chord tones, the syntactic do-
main of chord types is still very large. To reduce the
domain to a more reasonable number, we have excluded
pitch class repetitions in S (i.e., voice doublings), and we
have allowed permutations. Following [22], the assump-
tion here is that the precise location and repeated appear-
ance of a given interval are inconsequential to the identity
of the chord. By allowing permutations, the major triads
〈4, 7, 0〉 and 〈7, 4, 0〉 therefore reduce to 〈4, 7,⊥〉. Simi-
larly, by eliminating repetitions, the chords 〈4, 4, 10〉 and
〈4, 10, 10〉 reduce to 〈4, 10,⊥〉. This procedure restricts
the domain to 233 unique chord types in S (i.e., when I is
undefined).

To determine the underlying tonal context of each chord
onset, we employ the key-finding algorithm in [1], which
tends to outperform other distributional methods (with an

2 The value of each vertical interval is either undefined (denoted by
⊥), or represents one of twelve possible interval classes, where 0 denotes
a perfect unison or octave, 7 denotes a perfect fifth, and so on.
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<0,4,7,⊥> <11,3,8,⊥> <9,3,7,⊥>

Figure 2. Full expansion of Bach, “Aus meines Herzens
Grunde”, mm. 1–2. Three chord onsets are shown with the
tonal encoding scheme described in Section 2.2 for illus-
trative purposes.

accuracy of around 90% for both major and minor keys).
Since the movements in this dataset typically feature mod-
ulations, we compute the Pearson correlation between the
distributional weights in the selected key-finding algorithm
and the pitch-class distribution identified in a moving win-
dow of 16 quarter-note beats and centered around each
chord onset in the sequence. The algorithm interprets the
passage in Figure 2 in G major, for example, so the bass
note of the first harmony is 0 (i.e., the tonic).

3. LANGUAGE MODELS

The goal of language models is to estimate the probabil-
ity of event ei given a preceding sequence of events e1
to ei−1, notated here as ei−1

1 . In principle, these models
predict ei by acquiring knowledge through unsupervised
statistical learning of a training corpus, with the model
architecture determining how this learning process takes
place. For this study we examine the two most common
and best-performing language models in the NLP commu-
nity: (1) Markovian finite-context (or n-gram) models us-
ing the PPM algorithm, and (2) recurrent neural networks
(RNNs) using both long short-term memory (LSTM) lay-
ers and gated recurrent units (GRUs).

3.1 Finite Context Models

Context models estimate the probability of each event in a
sequence by stipulating a global order bound (or determin-
istic context) such that p(ei) depends only on the previous
n − 1 events, or p(ei|ei−1

(i−n)+1). For this reason, context
models are also sometimes called n-gram models, since
the sequence ei(i−n)+1 is an n-gram consisting of a context
ei−1
(i−n)+1, and a single-event prediction ei. These models

first acquire the frequency counts for a collection of se-
quences from a training set, and then apply these counts to
estimate the probability distribution governing the identity
of ei in a test sequence using maximum likelihood (ML)
estimation.

Unfortunately, the number of potential n-grams de-
creases dramatically as the value of n increases, so high-
order models often suffer from the zero-frequency prob-
lem, in which n-grams encountered in the test set do not
appear in the training set [27]. The most common solution
to this problem has been the Prediction by Partial Match
(PPM) algorithm, which adjusts the ML estimate for ei by
combining (or smoothing) predictions generated at higher

orders with less sparsely estimated predictions from lower
orders [5]. Specifically, PPM assigns some portion of the
probability mass to accommodate predictions that do not
appear in the training set using an escape method. The
best-performing smoothing method is called mixtures (or
interpolated smoothing), which computes a weighted com-
bination of higher order and lower order models for every
event in the sequence.

3.1.1 Model Selection

To implement this model architecture, we apply the
variable-order Markov model (called IDyOM) developed
in [19]. 3 The model accommodates many possible con-
figurations based on the selected global order bound, es-
cape method, and training type. Rather than select a global
order bound, researchers typically prefer an extension to
PPM called PPM*, which uses simple heuristics to de-
termine the optimal high-order context length for ei, and
which has been shown to outperform the traditional PPM
scheme in several prediction tasks (e.g., [21]), so we ap-
ply that extension here. Regarding the escape method, re-
cent studies have demonstrated the potential of method C
to minimize model uncertainty in melodic and harmonic
prediction tasks [12, 21], so we also employ that method
here.

To improve model performance, Finite Context mod-
els often separately estimate and then combine two sub-
ordinate models trained on differed subsets of the corpus:
a long-term model (LTM+), which is trained on the en-
tire corpus; and a short-term (or cache) model (STM),
which is initially empty for each individual composition
and then is trained incrementally (e.g., [8]). As a result,
the LTM+ reflects inter-opus statistics from a large corpus
of compositions, whereas the STM only reflects intra-opus
statistics, some of which may be specific to that composi-
tion. Finally, the model implemented here also includes a
model that combines the LTM+ and STM models using a
weighted geometric mean (BOTH+) [20]. Thus, we report
the LTM+, STM, and BOTH+ models for the analyses that
follow. 4

3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are powerful models
designed for sequential modelling tasks. RNNs transform
an input sequence xN

1 to an output sequence oN
1 through

a non-linear projection into a hidden layer hN
1 , parame-

terised by weight matrices Whx, Whh and Woh:

hi = σh (Whxxi +Whhhi−1) (1)

oi = σo (Wohhi) , (2)

where σh and σo are the activation functions for the hid-
den layer (e.g. the sigmoid function), and the output layer

3 The model is available for download: http://code.
soundsoftware.ac.uk/projects/idyom-project

4 The models featuring the + symbol represent both the statistics from
the training set and the statistics from that portion of the test set that has
already been predicted.
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Figure 3. The basic architecture for an RNN-based
language model. This model can easily accommodate
more recurrent hidden layers or include additional skip-
connections between the input and each hidden layer or
the output. The first input, e0, is a dummy symbol without
an associated chord.

(e.g. the softmax), respectively. We excluded bias terms
for simplicity.

RNNs have become popular models for natural lan-
guage processing due to their superior performance com-
pared to Finite Context models [17]. Here, the input at each
time step i is a (learnable) vector representation of the pre-
ceding symbol, v(ei−1). The network’s output oi ∈ RNtypes

is interpreted as the conditional probability over the next
symbol, p

(
ei | ei−1

1

)
. As outlined in Figure 3, this proba-

bility depends on all preceding symbols through the recur-
rent connection in the hidden layer.

During training, the categorical cross-entropy between
the output oi and the true chord symbol is minimised by
adapting the weight matrices in Eqs. 1 and 2 using stochas-
tic gradient descent and back-propagation through time.
However, this training procedure suffers from vanishing
and exploding gradients because of the recursive dot prod-
uct in Eq. 1. The latter problem can be averted by clipping
the gradient values; the former, however, is trickier to pre-
vent, and necessitates more complex recurrent structures
such as the long short-term memory unit (LSTM) [13] or
the gated recurrent unit (GRU) [4]. These units have be-
come standard features of RNN-based language modeling
architectures [16].

3.2.1 Model Selection

Selecting good hyper-parameters is crucial for neural net-
works to perform well. To this end, we performed a num-
ber of preliminary experiments to tune the networks. Our
final architecture comprises two layers of 128 recurrent
units each (either LSTM or GRU), a learnable input em-
bedding of 64 dimensions (i.e. v(·) maps each chord class
to a vector in R64), and skip connections between the input
and all other layers.

RNNs are prone to over-fit the training data. We use
the network’s performance on held-out data to identify this
issue. Since we employ 4-fold cross-validation (see Sec. 4
for details), we hold out one of the three training folds as
a validation set. If the results on these data do not improve
for 10 epochs, we stop training and select the model with
the lowest cross-entropy on the validation data.

We trained the networks for a maximum of 200 epochs,
using stochastic gradient descent with a mini-batch size of
4. Each of these 4 data points is a sequence of at most 300
chords. The gradient updates are scaled using the Adam
update rule [14] with standard parameters. To prevent ex-
ploding gradients, we clip gradient values larger than 1.

4. EXPERIMENTS

4.1 Evaluation

To evaluate performance using a more refined method than
one simply based on the accuracy of the model’s predic-
tion, we use a statistic called corpus cross-entropy, denoted
by Hm.

Hm(pm, e
j
1) = −

1

j

j∑
i=1

log2 pm(ei|ei−1
1 ). (3)

Hm represents the average information content for the
model probabilities estimated by pm over all e in the se-
quence ej1. That is, cross-entropy provides an estimate of
how uncertain a model is, on average, when predicting a
given sequence of events [21], regardless of whether the
correct symbol for each event was assigned the highest
probability in the distribution.

Finally, we employ 4-fold cross-validation stratified by
dataset for both model architectures, using cross-entropy
as a measure of performance.

4.2 Results

We first compare the average cross-entropy estimates
across the entire corpus using Finite Context models and
RNNs, and then examine the estimates across datasets for
the best performing model configuration from each archi-
tecture. We conclude by examining the differences be-
tween these models in a regression analysis.

4.2.1 Comparing Models

Table 2 presents the average cross-entropy estimates for
each model configuration. For the purposes of statisti-
cal inference, we also include the 95% bootstrap confi-
dence interval using the bias-corrected and accelerated per-
centile method [9]. For the Finite Context models, BOTH+

Model Type Hm CIa

Finite Context
LTM+ 4.895 4.811–4.978
STM 6.710 6.600–6.820
BOTH+ 4.893 4.800–4.966

Recurrent Neural Network
LSTM 5.583 5.539–5.626
GRU 5.600 5.551–5.645

a CI refers to the 95% bootstrap confidence interval of Hm using the
bias-corrected and accelerated percentile method with 1000 replicates.

Table 2. Model comparison using cross-entropy as an eval-
uation metric.
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Figure 4. Bar plots of the best-performing model configurations from the Finite Context (BOTH+) and RNN (LSTM)
models. Whiskers represent the 95% bootstrap confidence interval of the mean using the bias-corrected and accelerated
percentile method with 1000 replicates.

produced the lowest cross-entropy estimates on average,
though the difference between BOTH+ and LTM+ was
negligible. STM was the worst performing model over-
all, which is unsurprising given the restrictions placed on
the model’s training parameters (i.e., that it only trains on
the already-predicted portion of the test set).

Of the RNN models, LSTM slightly outperformed
GRU, but again this difference was negligible. What is
more, the long-term Finite Context models (BOTH+ and
LTM+) significantly outperformed both RNNs. This find-
ing could suggest that context models are better suited to
music corpora, since the datasets for melodic and harmonic
prediction are generally miniscule relative to those in the
NLP community [15]. The encoding scheme for this study
also produced a large vocabulary (2590 symbols), so the
PPM* algorithm might be useful when the model is forced
to predict particularly rare types in the corpus.

4.2.2 Comparing Datasets

To identify the differences between these models for each
of the datasets in the corpus, Figure 4 presents the bar
plots for the best-performing model configurations from
each model architecture: BOTH+ from the Finite Context
model, and LSTM from the RNN model. On average,
BOTH+ produced the lowest cross-entropy estimates for
the piano datasets (Mozart, Beethoven, Joplin), but much
higher estimates for the other datasets. This effect was not
observed for LSTM, however, with the datasets’ genre —
chorale, piano work, quartet, and symphony — apparently
playing no role in the model’s overall performance.

The difference between these two model architectures
for the Joplin and Mozart piano datasets is particularly
striking. Given the degree to which piano works gener-
ally consist of fewer homorhythmic textures relative to the
other genres in this corpus, it could be the case that the
piano datasets feature a larger proportion of rare, mono-
phonic chord types relative to the other datasets. The next
section examines this hypothesis using a regression model.

4.2.3 A Regression Model

Given the complexity of the corpus, a number of factors
might explain the performance of these models. Thus,

we have included the following five predictors in a mul-
tiple linear regression (MLR) model to explain the average
cross-entropy estimates for the compositions in the corpus
(N = 1136): 5

Ntokens Cache (i.e., STM) and RNN-based language mod-
els often benefit from datasets that feature longer se-
quences by exploiting statistical regularities in the
portion of the test sequence that was already pre-
dicted. Thus, Ntokens represents the number of to-
kens in each sequence. Compositions featuring more
tokens should receive lower cross-entropy estimates
on average.

Ntypes Language models struggle with data sparsity as n
increases (i.e., the zero-frequency problem). One
solution is to select corpora for which the vocab-
ulary of possible distinct types is relatively small.
Thus, Ntypes represents the number of types in each
sequence. Compositions with larger vocabularies
should receive higher cross-entropy estimates on av-
erage.

Improbable Events that occur with low probability in the
zeroth-order distribution are particularly difficult to
predict due to the data sparsity problem just men-
tioned. Thus, Improbable represents the proportion
of tokens in each sequence that appear in the bottom
10% of types in the zeroth-order probability distribu-
tion. Compositions with a large proportion of these
particularly rare types should receive higher cross-
entropy estimates on average.

Monophonic Chorales feature homorhythmic textures in
which each temporal onset includes multiple coin-
cident pitch events. The chord types representing
these tokens should be particularly common in this
corpus, but some genres might also feature poly-
phonic textures in which the number of coincident
events is potentially quite low (e.g., piano). Thus,

5 Four of the 1116 compositions were further subdivided in the se-
lected datasets, producing an additional 20 sequences in the analyses:
Beethoven, Quartet No. 6, Op. 18, iv (2); Chopin, Op. 12 (2); Mozart,
Piano Sonata No. 6, K. 284, iii (13); Mozart, Piano Sonata No. 11, K.
331, i (7).
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Monophonic represents the proportion of tokens in
each sequence that consist of only one pitch event.
Compositions with a large proportion of these mono-
phonic events should receive higher cross-entropy
estimates on average.

Repetition Compared to chord-class corpora, data-driven
corpora are far more likely to feature adjacent rep-
etitions of tokens. Thus, Repetition represents the
proportion of tokens in each sequence that feature
adjacent repetitions. Compositions with a large pro-
portion of repetitions should receive lower cross-
entropy estimates on average.

Table 3 presents the results of a stepwise regression
analysis predicting the average cross-entropy estimates
with the aforementioned predictors. R2 refers to the fit of
the model, where a value of 1 indicates that the model ac-
counts for all of the variance in the outcome variable (i.e., a
perfectly linear relationship between the predictors and the
cross-entropy estimates). The slope of the line measured
for each predictor, denoted by β, represents the change in
the outcome resulting from a unit change in the predictor.

For the Finite Context model (BOTH+), four of the
five predictors explained 53% of the variance in the cross-
entropy estimates. As predicted, cross-entropy decreased
as the number of tokens increased, suggesting that the
model learned from past tokens in the sequence. What is
more, cross-entropy increased as the vocabulary increased,
as well as when the proportion of monophonic or improb-
able tokens increased, though the latter two predictors had
little effect on the model.

For the RNN model, the effect of these predictors was
strikingly different. In this case, cross-entropy increased
with the proportion of improbable events. Note that this
predictor played only a minor role for the Finite Context
model, which suggests PPM* may be responsible for the
model’s superior performance. For the remaining predic-
tors, cross-entropy estimates decreased when the propor-
tion of adjacent repeated tokens increased. Like the Finite
Context model, the RNN model also struggled when the
proportion of monophonic tokens increased, but benefited
from longer sequences featuring smaller vocabularies.

5. CONCLUSION

This study examined the potential for language models to
predict chords in a large-scale corpus of tonal compositions
from the common-practice period. To that end, we devel-
oped a flexible chord representation scheme that (1) made
minimal a priori assumptions about the chord typology un-
derlying tonal music, and (2) allowed us to create a much
larger corpus relative to those based on chord annotations.
Our findings demonstrate that Finite Context models out-
perform RNNs, particularly in piano datasets, which sug-
gests PPM* is responsible for the superior performance,
since it assigns a portion of the probability mass to poten-
tially rare, as-yet-unseen types. A regression analysis gen-
erally confirmed this hypothesis, with LSTM struggling to
predict the improbable types from the piano datasets.

Model Predictors β R2

BOTH+
Ntokens −2.079 .212
Ntypes 1.860 .506
Monophonic 0.233 .506
Improbable 0.076 .530

LSTM
Improbable 0.463 .318
Repetition −0.558 .375
Ntypes 0.817 .504
Monophonic 0.452 .568
Ntokens −0.554 .591

Note. Each predictor appears in the order specified by stepwise selection,
with R2 estimated at each step. However, β presents the standardized
betas estimated in the model’s final step.

Table 3. Stepwise regression analysis predicting the av-
erage Hm estimated for each composition from the best-
performing model configurations with characteristic fea-
tures of the corpus.

To our knowledge, this is the first language-modeling
study to use such a large vocabulary of chord types, though
this approach is far more common in the NLP community,
where the selected corpus can sometimes contain millions
of distinct word types. Our goal in doing so was to bridge
the gulf between the most current data-driven methods for
melodic and harmonic prediction on the one hand [24], and
applications of chord typologies for the creation of cor-
pora using expert analysts on the other [3]. Indeed, despite
recent efforts to determine the efficacy of language mod-
els for annotated corpora [11, 15], relatively little has been
done to develop unsupervised methods for the discovery of
tonal harmony in predictive contexts.

One serious limitation of the architectures examined
in this study is their unwavering commitment to the sur-
face. Rather than skipping seemingly inconsequential on-
sets, such as those containing embellishing tones or repeti-
tions, these models predict every onset in their path. As a
result, the model configurations examined here attempted
to predict tonal (pitch) content rather than tonal harmonic
progressions per se. In our view, word class models could
provide the necessary bridge between the bottom-up and
top-down approaches just described by reducing the vo-
cabulary of surface simultaneities to its most essential har-
monies [2]. Along with prediction tasks, these models
could then be adapted for sequence generation and auto-
matic harmonic analysis, and in so doing, provide converg-
ing evidence that the statistical regularities characterizing
a tonal corpus also reflect the order in which its constituent
harmonies occur.
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