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2 Data Science Team, Itaú-Unibanco, São Paulo, Brazil*

3 Instituto de Geociências e Ciências Exatas – Universidade Estadual Paulista, Rio Claro, Brazil
4 Departamento de Computação – Universidade Federal de São Carlos, São Carlos, Brazil
padua@icmc.usp.br, veronica@rc.unesp.br, solange@icmc.usp.br, diegofs@ufscar.br

ABSTRACT

Music information retrieval (MIR) has been gaining in-
creasing attention in both industry and academia. While
many algorithms for MIR rely on assessing feature sub-
sequences, the user normally has no resources to interpret
the significance of these patterns. Interpreting the relations
between these temporal patterns and some aspects of the
assessed songs can help understanding not only some algo-
rithms’ outcomes but the kind of patterns which better de-
fines a set of similarly labeled recordings. In this work, we
present a novel method to assess these relations, construct-
ing an association rule network from temporal patterns ob-
tained by a simple quantization process. With an empirical
evaluation, we illustrate how we can use our method to ex-
plore these relations in a varied set of data and labels.

1. INTRODUCTION

Digital music repositories and streaming music services
have become increasingly popular in the last decades.
Along with this growth, algorithms to automatically orga-
nize, navigate, and search on music collections are more
and more necessary. For this reason, Music information
retrieval (MIR) has been gaining considerable attention in
both industry and academia.

There is a multitude of MIR methods that rely on assess-
ing subsequences of features. In other words, these meth-
ods extract features from the audio in a sliding window
fashion and use successive subsets of these features to take
decisions over the data. One example is the music genre
classification, in which a common approach is to aggregate
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features from subsequences to obtain a more robust set of
features [2, 8]. Moreover, Silva et al. [12] showed how as-
sessing distances between subsequences can be used as a
subroutine for different MIR tasks, from cover recognition
to visualization.

In this work, we propose the use of a novel category
of association rules networks to support understanding the
relations between sequential patterns and labels which de-
scribe our data. The exploration of these association rules
may provide insights on what kind of pattern defines one
label, which may have implications on musicology or other
MIR tasks.

For instance, consider the genre as the target label. If
one pattern (or a group of patterns) happens with high con-
fidence for only one label, this may help to explain the
characteristics which define that genre. Also, it may guide
us to understand how to improve music classification al-
gorithms. Besides, our method helps us to find patterns
shared between different labels. This kind of relation can
be used, for example, to improve music recommendation
systems, as well as provides insights on the musical influ-
ences between different labels.

Figure 1 illustrates one example of relations found by
our method. It represents that, for a given dataset labeled
with genre information, when the pattern indexed by 10
appears in a recording, we can say that recording belongs
to the label “classical” with 100% of confidence. Also, if
the patterns 23 and 4 happens in the same recording, it be-
longs to the label “classical” with 94% of confidence. The
patterns correspond to quantized subsequences of features
– Mel-Frequency Cepstrum Coefficients (MFCC), in this
case – and can be assessed visually or by listening to the
music excerpt that generated it.

In this paper, we introduce algorithms to represent as-
sociation rules in a graph, aiming to provide a visual tool
to understand the relations between the features that com-
pose it. Then, we apply our method on different datasets,
described by varied classes of labels, to demonstrate how
to use this representation to understand the relations be-
tween features and labels, as well as which patterns link
two different labels.
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Figure 1: Example of association rule network

The remainder of this paper is organized as following.
Section 2 introduces the main concepts of association rules
and association rules networks, accompanied by related
work. The method presented in this work is presented in
Section 3. Section 4 presents our experimental evaluation.
Finally, Section 5 concludes this work.

2. BACKGROUND AND RELATED WORK

The association rules were first proposed by Agrawal et. al.
[1]. The goal of the proposed approach was identifying, in
supermarket buying transactions, what were the items that
customers used to buy together. This analysis was made
aiming to help the supermarket owners to organize their
stock in order to raise the sales of some specific items. To
understand how association rules discovery works, we first
define some concepts related to it.

Definition 1 Given a set of items I, a set of transaction T
consisting of subsets of I, an association rule is the relation
A→ B, where A and B are subsets of I and A ∩ B = ∅.

A is called antecedent (or Left-Hand side - LHS) and B
is called consequent (or Right-Hand side - RHS). The asso-
ciation rule can be read as: “given that A happened, B also
happens in c% of the cases”, where c% is the association
rule confidence. Support (s%) is another important mea-
sure in the association rule, that describes the percentage
of transactions in which all the items of the rule appear.

Definition 2 The support σ(A) of a subset A⊂ I is defined
by the percentage of transactions that contain all the items
presented in A.

Definition 3 The confidence of a rule A → B is given by
the percentage of transactions that contain all the items in
A that also contain all the items in B. The confidence is
calculated by σ(A∪B)

σ(A) .

Also, the Lift is a widely used measure to assess the
association rule quality. It evaluates if the items on the
LHS are positively or negatively dependent with the items
on RHS, or if these sets are independent.

Definition 4 The lift value of a rule A → B is given by
the probability of A and B happen together divided by the
probability of A times the probability of B, calculated by
σ(A∪B)
σ(A)σ(B)

The Association Rule Network (ARN) was proposed by
Chawla et. al. [5] and extended by Pandey et. al. [10] and
by Chawla [4]. The ARN models all the association rules
that are directly or indirectly correlated to an specific item
(called objective item) in a directed acyclic graph (DAG),
pruning all the other rules that are not interesting in the
objective item context. According to Pandey et. al. [10],
the ARN modeling is capable of pruning the rules into a
specific context, defined by the selected objective item.

According to Thulasiraman et. al. [14], a graph G =
(V, E) consists of two sets: a finite set of vertices V and
a finite set of edges E. Each vertex represents an object
in the graph and an edge represents a link between two
vertices. Also, it is possible to define the graph G = (V, E,
W), consisting of three sets: the V and E sets remain the
same, while the W set represents the weight of the edges
in the graph G. In a graph that does not have weights, the
W may have 1 where the connection exists and 0 where
it does not exists. If the edges are ordered, i.e., the edges
are identified as “from” vertex and “to” vertex, then it is
said that the graph is directed because its edges contain a
direction. A Directed Acyclic Graph (DAG), is a particular
type of graph that contains no cycles.

Definition 5 We say that a directed graph contains cycles
if given a graph G containing N vertices V, the graph has a
path that goes from vx to vy and there is also a path from
vy to vx.

An example of an ARN with objective item “G” is pre-
sented on Figure 2. In this example, the following rules
were modeled: A→ D, B→ D, B→ C, C & D→ E and
E & F→ G. All the other extracted rules were pruned be-
cause they were not interesting in the context of the G item
exploration.

B

A

C

D

E

F

G

Figure 2: Example of ARN with objective item = G,
adapted from Pandey et. al. [10].

The final ARN is a directed acyclic graph that flows to
the objective item, i. e., all elements on the graph have
directed connections that leads to an objective item. This
graph models the association rules that better explains the
occurrence of the selected objective item. The modeling
can be used to build a hypothesis, based on the correlation
among the items in the database and the objective item that
the user wants to understand.

The ARN algorithm can be described in 3 steps, de-
scribed as follows.

Step A Given a database D, a minimum support, and a
minimum confidence value, we extract the associa-
tion rules using an algorithm, like apriori [1]. The
RHS must have size 1.
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Step B Considering all the items in the association rules’
RHS, the user selects one item to represent the ob-
jective item.

Step C Models all the rules that have the objective item
in the RHS (considered level 0) or already modeled
on other levels. The modeling must fulfill the 2 re-
strictions: 1 - The LHS of the rule is not present in
the network or 2 - the LHS level is equal the RHS
level + 1.

3. EXTRACTING AND ASSOCIATING PATTERNS

The proposed method relies on two main steps, which we
describe in details in this section. The first one extracts
frame-level features from the audio and quantize them to
create a limited dictionary of patterns. With this pro-
cedure, we transform the recordings in our database in
a transaction-like representation, where each recording is
represented by the patterns presented in it. This represen-
tation is used in the second step of our method.

The second one extracts and selects the best rules to de-
scribe all the labels on the dataset. We extract the associa-
tion rules, prune the rules which do not present interesting
knowledge on the labels context and build a DAG, explain-
ing how the patterns correlates to the labels.

3.1 Extracting and Quantizing Subsequence Patterns

As aforementioned, the first step of our method relies on
associating each recording to one or more temporal pat-
terns in a bag-of-patterns representation. For this, we split
this phase into different intermediate steps to create a dic-
tionary and, then, associate each subsequence of features
from each recording to a codeword in this dictionary.

Initially, we extract frame-level Mel-Frequency Cep-
trum Coefficients (MFCC) and Constant-Q chromagram
from the raw audio. For this, we used the LibROSA pack-
age for music and audio analysis [9]. Since our main pur-
pose is not comparing different parameter settings of each
feature extraction procedure, we applied the default param-
eters defined by the tool. We chose these features since
they represent distinct characteristics of music. Specifi-
cally, the MFCC and chromagram are intrinsic to timbre
and pitch information, respectively.

To associate each feature vector to a pattern, we first
need to create a dictionary. For this, we applied the simple
k-Means clustering algorithm on subsequences of the fea-
ture vectors. The centroid of each cluster defines one code-
word, i.e., the prototype of a temporal pattern. For the sake
of memory and time efficiency, we only used one-third of
the subsequences to estimate the centroids.

Once the codewords are defined, we associate all fea-
ture subsequences of each song with codewords, accord-
ing to their proximity. In other words, for each recording,
we find the nearest centroid of each subsequence of fea-
tures and annotate it. At the end of this step, each record-
ing is described by the set of codewords that appear in its
subsequences. In the case of repetition, we remove these
recurrences.

Although this step relies on defining the number of
codewords, we leave details regarding this to Section 4.

3.2 Extended Association Rule Network

The Extended Association Rule Network (ExARN) aims
to aid the user to understand the data and build a hypoth-
esis from that data. The objective is to model the associa-
tion rules in a graph, explaining the correlation among the
attributes in the database according to a set of attributes
selected by the user. For instance, consider the contact
lens database 1 , which is aimed to automatically prescribes
contact lenses to patients. In this case, the user may be
interested not in the classification, but in understanding
which are the patient’s characteristics that define which
kind of lens will be prescribed.

The ExARN is conceptually different from associative
classification algorithms and decision trees, which build
the model only based on the classes, ignoring all other cor-
relations present on the database. The ExARN explores
a set of previously extracted association rules and, then,
searches for the best rules to describe the set of attributes
defined by the user. Also, it has some interesting proper-
ties: i) it is built on a DAG, which means that there are no
cycles on the network, ii) it is built on levels, every rule
has the LHS on level x and the RHS on level x + 1, for
example, an objective attribute will mandatorily be on the
RHS and on level 0, all the attributes on LHS that contains
that attribute on RHS will be on level 1 and so on.

The ExARN is built in three steps. The first step con-
sists of the association rule mining phase. The only re-
striction added to this step, if compared to a conventional
association rule mining, is that the rules must an RHS with
size 1. This restriction was added, so each rule explains
only one attribute, reducing the complexity for the user to
explore the result.

The second step is the objective attribute definition.
This step will guide the entire exploration, as it will de-
fine the objective attributes which the network will be built
from. The user must select the attributes that will be ex-
plored. This selection must be done considering also the
possibility that these attributes have a common cause to be
explored or refuted.

The last step consists of the ExARN construction. This
step is responsible for getting all the rules that are directly
or indirectly related to the objective attributes and model
them following the ExARN restrictions. The ExARN
building is done recursively. First, all the attributes se-
lected as objective attributes are modeled in the graph on
the level 0. Then, all the rules that the LHS’ attributes are
not in the graph and have the RHS’ attributes on level 0 are
modeled on the network. The same process is done to all
the attributes on level 1, then to attributes on level 2 and
so on. Until there are no more rules to be modeled. The
ExARN can be defined as follows:

Definition 6 Given a set of association rule R, containing
rules with RHS of size 1, and a set of objective attributes

1 https://archive.ics.uci.edu/ml/datasets/
lenses
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Z with size ≥ 2, the ExARN is a DAG that models all the
rules related to the items on Z, such as:

1. Each vertex models a rule r ⊂ R.

2. From any point of the network, it is always possible
to reach at least 1 vertex representing an attribute
from Z.

3. Given a vertex v ⊂ ExARN, such as v 6⊂ Z. There is
no path from any item on Z to v.

The ExARN presents a wider exploration if compared
to the presented ARN because it allows the exploration of
2 or more objective items at once. That way, the user might
discover which patterns are interesting in the context of a
single objective item, also discovering which patterns are
interesting for a set of objective items.

4. EXPERIMENTAL EVALUATION

In this section, we describe the experimental evaluation
performed to assess the ExARN in different scenarios of
music data. We note that we made a supplementary web-
site 2 where we make available source codes and detailed
results, as well interactive visualizations of the networks
presented in this section and some audio excerpts to exem-
plify some of the mentioned patterns.

4.1 Rule discovery and association setup

After extracting the subsequence patterns, the database
pattern extraction begins. The sequence described here
was applied to all the databases.

First, the association rules were extracted. We mined
the association rules using the arules package in R 3 . This
step needs the definition of some parameters. The support
value, which is a threshold of minimum occurrence was
set to 1%. This value was chosen because the databases
were divided into more than 10 different labels, so each
subpattern will have a maximum occurrence of 1

numLabels

on each label. Defining the minimum support to 1% will
remove only the subpatterns that rarely happens. The
other parameter is called confidence, which can be defined
in terms of posterior probability as: Conf(A → B) =
P (B|A). We defined the minimum confidence on 25%,
which means that the B must happen in, at least, one-
quarter of the occurrence of A.

To make sure that the association rules are positively
dependent, we applied a filter using the lift measure. The
threshold was defined at 2, as rules with lift value ≥ 1 are
considered to have a positive dependency. We selected the
value 2 instead of 1 as this value discards the rules that are
on the edge of the measure. Then, we applied the ExARN
algorithm over the association rules, considering all the la-
bels as the objective items

2 https://sites.google.com/view/music-exarn
3 available at https://cran.r-project.org/web/

packages/arules/index.html

4.2 Datasets

The datasets used in our experimental evaluation aim to
provide us a diversity of characteristics and labels. For this
reason, we used diversified datasets and for one of them,
we used different labels for the same bag-of-patterns.

One of the most common labels in MIR datasets is the
genre. We evaluated our method in this context using the
GTZAN dataset [15]. This database is composed of 1000
thirty-second tracks, perfectly balanced in ten genres.

Another way to categorize music data is according to
the artist who recorded it. We also evaluated our method
in this scenario, using the Artist20 dataset [7]. This dataset
contains 1413 songs performed, as its name suggests, by
20 artists mostly of pop or rock music. The number of
recordings is not balanced among the artists.

Finally, we assessed the FMA dataset [6]. Moreover, we
took the fact that many of the recordings in these databases
are associated with “social” features provided by Echon-
est 4 to evaluate our method on varied labels for the same
data. Specifically, we applied our method targeting seven
distinct labels: acousticness, danceability, energy, instru-
mentalness, liveness, speechness, and valence. In order
to transform these continuous features in class-like values,
we discretized the features in five equally spaced intervals,
representing low, mid-low, mid, mid-high, and high levels
of each characteristic. As we used the default small portion
of this data and only kept information from the recordings
associated with Echonest features, we ended with 1023
tracks.

4.3 On the Impacts of the Codebook’s Size

The quantizing phase of our method has one parameter that
affects the results of our method. The number of clusters to
create the dictionary, i.e., the number of codewords, have
a direct impact on the confidence. Particularly, the higher
the number of codewords, the lower the confidence of the
rules. Conversely, the lower the number of clusters, the
higher is the confidence.

As we experimented with 25, 50, and 100 codewords
in each dataset, we stick our analysis on the lower value.
However, we notice that a high number of codewords may
be more appropriate for datasets with a high number of la-
bels. Otherwise, the intersection between the labels would
be too high to find meaningful rules. In this paper, the
higher number of assessed labels is 20.

There is another characteristic of using fewer code-
words regarding the interpretability of the results. As the
codewords are centroids, if we use too few clusters the
codewords will look “blurry” or few informative. How-
ever, we noticed that it does not hamper the rule discovery
and the music excerpts that were associated with each pat-
tern can listen to a better understanding of what that pattern
represents. Also, once the ExARN is computed, we can
break a pattern A in more parts, B and C for instance, in
a procedure similar to the Bisect k-Means approach [13].
With this operation, we turn the patterns more specific.

4 http://the.echonest.com/
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Figure 3: Examples of patterns in different resolutions,
given by the number of codewords in the dictionary: 25
(left) and 100 (right)

Then, instead of reading the association regarding A, one
may read it regarding “B or C.” Figure 3 illustrates two
chroma patterns obtained from different number of code-
words.

4.4 Results and Discussion

In this section, we present some of the results obtained by
our method. For simplicity, we split it into sections regard-
ing each analyzed dataset and the target labels of each of
them. Specifically, the results on GTZAN, Artist20, and
FMA are presented in the sections regarding genre, artist,
and the “social features” from Echonest.

We acknowledge that interpreting the patterns and, as
consequence, the meaning of some rules, only using tex-
tual and static graphical elements is a difficult matter. For
this reason, we make available on our website interactive
visualizations of ARNs obtained in our experiments, as
well as some music excerpts that are representative of rel-
evant patterns.

We note that association rules discovery is an unsuper-
vised task and, therefore, there is no quantitative evaluation
measure to assess the quality of these rules. The only way
to objectively evaluate the value of the learned rules would
be use it as an intermediate step of an algorithm to per-
form other task, such as classification or recommendation
systems. We leave this as an intention for future work.

4.4.1 Genre

Using MFCC, we found a few interesting rules that asso-
ciate patterns with some of the target labels. One example
is the one illustrated by Figure 1. We also found similar as-
sociations to other genres. Specifically, for metal, reggae,
and jazz. The latter two, however, with lower confidences
(around 33%).

The most interesting relations in this dataset come from
the patterns shared between distinct labels. Figure 4
presents the entire network for this dataset when associ-
ating patterns representing 10 seconds of audio.

Some of the patterns are associated with several genres
in the presented network. These patterns are not suitable
for differing the characteristics of each genre. However,
we commonly see music elements that are used in songs
belonging to different genres. So, this kind of multiple
relations was expected. For instance, we observed a pattern
associated with the genres disco, pop, and hip-hop.

On the other hand, we found patterns that link pairs of
genres. These patterns directly associate two genres that

Figure 4: ExARN obtained by associating MFCC patterns
from 10 seconds of audio in the GTZAN dataset

have somehow similar timbral information. It may help
explain the influence between genres or the mutual influ-
ences of each pair. One example of two genres linked by
this kind of association is the pair metal and blues. An-
other interesting relation regards the genres classical and
jazz. They have two patterns that are common for both.
However, they usually happen together (i.e. in the same
recording) in classical pieces but separately in jazz songs.
We noticed that we did not achieved interesting associa-
tions when using chroma features in this case.

4.4.2 Artist

Is there any link between Metallica and Roxette regarding
tonal patterns in their songs? The answer is “yes, there is
Tori Amos.” Using subsequences of chroma vectors repre-
senting 10 seconds in the Artists20 dataset, we found that
these three artist have sets of four tonal patterns each that
are confidentially linked to each of them. Moreover, Tori
Amos shares one of its patterns with Metallica and another
one with Roxette. Figure 5 illustrates these relations.

Figure 5: Subset of the rules obtained from chroma pat-
terns in the Artist20 dataset

This kind of relation is commonly seen when using
MFCC as the input features in this dataset. For instance,
when applying the ExARN algorithm on five seconds ex-
cerpts, we found rules with (at least) the minimum sup-
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port for seven artists. When using ten seconds excerpts,
we found rules for ten artists. In all of these cases, there is
at least one timbral pattern for each artist which links it to
another one.

We notice that these links are relevant since they are not
trivial. In other words, if a timbral or chromatic pattern
is present in many songs of several artists, the rules con-
taining it would have a very low support. Therefore, these
links show how two (or more artists) are musically related
each other by patterns that are not so commonly used.

4.5 Echonest Labels

We evaluated the ExARN on seven different labels from
Echonest. We found relevant rules in all of them but the
speechiness. For the other labels, the association rules net-
work demonstrated regularities in their behavior. For in-
stance, when we assess the rules associated to a single la-
bel, usually we cannot find association with minimum sup-
port for the intermediate values. This may happen because
the middle labels are fuzzy. In other words, the assessed
patterns can describe solely the high and low characteris-
tics at a minimum support. Figure 6 illustrates this fact
regarding the acousticness.

Figure 6: Association rules from MFCC that are not
shared by different intervals of acousticness

When we analyze the rules that associate different la-
bels, three main behaviors appear. The first one is not find-
ing patterns which relate different levels of these character-
istics. Figure 7 illustrates the second, and most common,
behavior. In this case, the extremes are separate into dis-
tinct components, i.e., the high and mid-high values are
linked by some patterns, similarly to what happens be-
tween low and mid-low values.

Finally, in some cases, the labels representing extreme
values are directly linked by one or more patterns while
some patterns play the rule of “bridges” between these ex-
tremes. Figure 8 illustrates this scenario.

5. CONCLUDING REMARKS

In this paper we presented the use of extended association
rules networks for exploring the correlation between tem-
poral patterns and labels of music in different scenarios.

To evaluate the meaning of the discovered rules, we pre-
sented some reasoning to verify the quality of these rules as
a qualitative approach. One example is evaluating the ex-
istence of links between labels we consider similar to each
other. In other cases, our rules may explicit some relations

Figure 7: Association rules from MFCC shared by differ-
ent intervals of energy

Figure 8: Association rules from chroma features shared
by different intervals of energy

that are not obvious. In both cases, studying the patterns
that composes such relations can be useful to understand
music data in several aspects. For instance, in some cases,
we could find interesting relations using chroma vectors in
scenarios where these features are not usually considered
(e.g. to describe valence and energy).

As future work, we intend to improve the quantization
step so we reduce the impact of the codebook generation
and we can ignore several patterns, considering them irrel-
evant. For this, we may evaluate the use of some density-
based clustering strategy [3,11]. Also, we will evaluate the
use of ExARN as an intermediate step to improve recom-
mendation systems. Finally, we intent to evaluate if this
kind of association rules network can improve the inter-
pretability of music-related learned features.
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