

JSYMBOLIC 2.2: EXTRACTING FEATURES FROM

SYMBOLIC MUSIC FOR USE IN MUSICOLOGICAL AND

MIR RESEARCH

Cory McKay Julie E. Cumming Ichiro Fujinaga

Marianopolis College
cory.mckay@mail.mcgill.ca

McGill University
julie.cumming@mcgill.ca

McGill University
ichiro.fujinaga@mcgill.ca

ABSTRACT

jSymbolic is an open-source platform for extracting fea-

tures from symbolic music. These features can serve as

inputs to machine learning algorithms, or they can be

analyzed statistically to derive musicological insights.

jSymbolic implements 246 unique features, compris-

ing 1497 different values, making it by far the most ex-

tensive symbolic feature extractor to date. These features

are designed to be applicable to a diverse range of mu-

sics, and may be extracted from both symbolic music

files as a whole and from windowed subsets of them. Re-

searchers can also use jSymbolic as a platform for devel-

oping and distributing their own bespoke features, as it

has an easily extensible plug-in architecture.

In addition to implementing 135 new unique features,

version 2.2 of jSymbolic places a special focus on func-

tionality for avoiding biases associated with how symbol-

ic music is encoded. In addition, new interface elements

and documentation improve convenience, ease-of-use and

accessibility to researchers with diverse ranges of tech-

nical expertise. jSymbolic now includes a GUI, com-

mand-line interface, API , flexible configuration file for-

mat, extensive manual and detailed tutorial.

The enhanced effectiveness of jSymbolic 2.2’s fea-

tures is demonstrated in two sets of experiments: 1) genre

classification and 2) Renaissance composer attribution.

1. INTRODUCTION

The majority of research performed by musicologists,

music theorists, music librarians and others focuses on

symbolic music representations. Unfortunately, relatively

few MIR-oriented software tools are available to assist

such research, particularly with respect to research in-

volving the increasingly large corpora being studied.

jSymbolic is an open-source Java framework designed

to at least partially address this shortcoming. Its primary

function is to extract a large number of features (statisti-

cal descriptors) from potentially huge collections of digi-

tally-represented symbolic music. These features can then

be used to directly assist music researchers in analysis

and search-based tasks, as well as in research incorporat-

ing machine learning.

Possible research applications include: empirical test-

ing of existing musicological theories [11]; exploratory

research that can reveal unexpected insights [11]; recon-

ciling historical evidence with content-based data [12];

annotation of large corpora to allow content-based

searches [10]; performing multimodal research by com-

bining symbolic features with audio, textual and other

features [9]; and generating novel music in specific styles

by using feature values as stylistic guideposts [23].

jSymbolic 2.2 has been dramatically improved and ex-

panded since its last properly published version (1.2) was

released in 2010 [9]. It is also a component of the larger

jMIR research software framework [9]. jSymbolic and

the other jMIR components (including source code) can

all be downloaded from [13].

2. RELATED RESEARCH

Surprisingly few frameworks designed specifically for

extracting features from symbolic music have been pub-

lished, although there are several MIR toolkits for analyz-

ing symbolic music more generally. The MIDI Toolbox

[6] is one particularly well-known system implemented in

Matlab. The powerful music21 analysis toolkit [4] in-

cludes ports of 57 of the original jSymbolic 1.2 features,

and also offers substantial additional useful functionality.

The Humdrum toolkit [8] is a well-known tool for ana-

lyzing music, although it does not extract features as

such. The Melisma Music Analyzer [22] is another excel-

lent analysis-oriented system, and pretty_midi [17] pro-

vides helpful creation, manipulation and extraction tools.

Additional work has been published where symbolic

feature extraction is performed as a part of larger research

projects, but where the feature extraction code has not

itself been published. Standouts include [1] and [15].

Corrêa and Rodrigues have written a nice survey of relat-

ed symbolic genre classification research [2].

To the best of our knowledge, there is no existing

software that extracts anywhere near the number or diver-

sity of features as jSymbolic, nor is there any with the

same focus on broad accessibility and extensibility.

 © Cory McKay, Julie E. Cumming, Ichiro Fujinaga.
Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: Cory McKay, Julie E. Cumming,
Ichiro Fujinaga. “jSymbolic 2.2: Extracting Features from Symbolic

Music for use in Musicological and MIR Research”, 19th International

Society for Music Information Retrieval Conference, Paris, France,

2018.

348

3. CHARACTERISTICS OF JSYMBOLIC

3.1 Features Extracted

jSymbolic 2.2 extracts 246 unique features, some of

which are multidimensional, for a total of 1497 values

(version 1.2 extracted 111 features and 1022 values). De-

tails on the original musicological and music theoretical

sources and motivations for the features are available in

[9]. The features can be divided into eight general groups:

 Pitch Statistics: How common are various pitches

and pitch classes relative to one another? How are

they distributed and how much do they vary?

 Melodic Intervals: What melodic intervals are pre-

sent? How much melodic variation is there? What can

be observed from melodic contour measurements?

 Chords and Vertical Intervals: What vertical inter-

vals are present? What types of chords do they repre-

sent? What kinds of harmonic movement are present?

 Rhythm: Information associated with note attacks,

durations and rests, measured in ways that are both

dependent and independent of tempo. Information on

rhythmic variability, including rubato, and meter.

 Instrumentation: Which instruments are present,

and which are emphasized relative to others? Both

pitched and non-pitched instruments are considered.

 Texture: How many independent voices are there

and how do they interact (e.g. parallel vs. contrary

motion)? What is the relative importance of voices?

 Dynamics: How loud are notes and what kinds of

variations in dynamics occur?

 MEI-Specific: Information that cannot be represent-

ed explicitly in MIDI (e.g. slurs) but can be in the

Music Encoding Initiative (MEI) file format [16].

See Figure 1 for a complete list of the jSymbolic 2.2 fea-

tures, including indications of which ones are new, as

well as which ones are multidimensional.

These features are designed to be wide-ranging, in or-

der to be applicable to a diverse range of musics from a

variety of cultures, styles and time periods. A few fea-

tures are intentionally partially redundant; for example,

the Vertical Interval Histogram indicates the number of

minor thirds and major thirds (among other things) sepa-

rately, but the Vertical Thirds feature combines them.

Such partial redundancies help highlight patterns in alter-

native ways to musicologists examining features. Also,

some features are based on information explicitly (but not

necessarily correctly) specified as metadata in the input

files, such as meter or key, and others attempt to infer

such information directly from the music itself.

3.2 Designing New Features

Extensibility and modularity are key priorities, as jSym-

bolic is intended to be a platform for developing and test-

ing new features just as much as it is an out-of-the-box

tool. New features can be added as plug-ins simply by

extending an existing Java class, and it is easy to incorpo-

rate the values of existing features into new features in

order to iteratively build new features of increasing so-

phistication. jSymbolic also automatically handles all in-

frastructure relating to feature dependencies and extrac-

tion scheduling. The overall design of the software is ex-

tensible, as is its configuration file format.

A tool has been added for exploring MIDI messages

directly at a low-level, in order to help debug new fea-

tures. jSymbolic also now automatically validates and

error-checks new features as they are added, and there is

substantial new general unit testing infrastructure.

3.3 Configuration Files

jSymbolic now includes a flexible configuration file for-

mat that can be used for batch processing, as a way of ap-

plying consistent settings across sessions and for keeping

a record of settings used in individual experiments. These

configuration files can be saved with the GUI, or they can

be edited directly.

3.4 Avoiding Systematic Encoding Bias

One must always be careful that extracted features are not

correlated with the source of data rather than its underly-

ing musical content. This could happen, for example, in a

corpus constructed by joining data from different sources,

where each source uses different encoding conventions

(e.g. different instrumentation designations for voices, or

different interpretations of tempo markings). Such issues

have been discussed regarding audio [21], but less so for

symbolic data. Ideally, all data in a corpus would be sys-

tematically encoded in the same way, but this is rarely the

case in practice.

jSymbolic therefore now includes functionality for

generating “consistency reports.” These automatically

check sets of symbolic music files for such biases.

An optional “safe” configuration file is also provided,

which disables features associated with instrumentation,

dynamics, microtonal pitches and tempo, as these tend to

be particularly vulnerable to encoding bias. This is espe-

cially useful for musics where these qualities are typically

unspecified, such as Renaissance music.

Many of jSymbolic 2.2’s new features are also specifi-

cally designed to avoid such biases. For example, many

of the new rhythmic features are tempo-independent, so

that they can be used even if tempo is source-correlated,

while the old tempo-linked features can still be used if

tempos are meaningfully and consistently encoded.

[3] presents a more detailed analysis of related issues,

including empirical results produced with jSymbolic 2.2.

3.5 Windowed Extraction

Users can now perform windowed feature extraction with

jSymbolic, with overlapping or non-overlapping win-

dows, as well as extraction over entire pieces. Although

common with audio, this ability to extract features sepa-

rately from subsets of a piece is rare in the symbolic do-

main, and enables powerful new kinds of analysis.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 349

Overall Pitch Statistics

(128) Basic Pitch Histogram

(12) Pitch Class Histogram

(12) Folded Fifths Pitch Class Histogram

Number of Pitches

Number of Pitch Classes

Number of Common Pitches

Number of Common Pitch Classes

Range

Importance of Bass Register

Importance of Middle Register

Importance of High Register

Dominant Spread

Strong Tonal Centres

Mean Pitch

Mean Pitch Class

Most Common Pitch

Most Common Pitch Class

Prevalence of Most Common Pitch

Prevalence of Most Common Pitch Class

Relative Prevalence of Top Pitches

Relative Prevalence of Top Pitch Classes

Interval Between Most Prevalent Pitches

Interval Between Most Prevalent Pitch Classes

Pitch Variability

Pitch Class Variability

Pitch Class Variability After Folding

Pitch Skewness

Pitch Class Skewness

Pitch Class Skewness After Folding

Pitch Kurtosis

Pitch Class Kurtosis

Pitch Class Kurtosis After Folding

Major or Minor

First Pitch

First Pitch Class

Last Pitch

Last Pitch Class

Glissando Prevalence

Average Range of Glissandos

Vibrato Prevalence

Microtone Prevalence

Melodic Intervals

(128) Melodic Interval Histogram

Most Common Melodic Interval

Mean Melodic Interval

Number of Common Melodic Intervals

Distance Between Most Prevalent Melodic Intervals

Prevalence of Most Common Melodic Interval

Relative Prevalence of Most Common Melodic Intervals

Amount of Arpeggiation

Repeated Notes

Chromatic Motion

Stepwise Motion

Melodic Thirds

Melodic Perfect Fourths

Melodic Tritones

Melodic Perfect Fifths

Melodic Sixths

Melodic Sevenths

Melodic Octaves

Melodic Large Intervals

Minor Major Melodic Third Ratio

Melodic Embellishments

Direction of Melodic Motion

Average Length of Melodic Arcs

Average Interval Spanned by Melodic Arcs

Melodic Pitch Variety

Chords and Vertical Intervals

(128) Vertical Interval Histogram

(12) Wrapped Vertical Interval Histogram

(11) Chord Type Histogram

Average Number of Simultaneous Pitch Classes

Variability of Number of Simultaneous Pitch Classes

Average Number of Simultaneous Pitches

Variability of Number of Simultaneous Pitches

Most Common Vertical Interval

Second Most Common Vertical Interval

Distance Between Two Most Common Vertical Intervals

Prevalence of Most Common Vertical Interval

Prevalence of Second Most Common Vertical Interval

Prevalence Ratio of Two Most Common Vertical Intervals

Vertical Unisons

Vertical Minor Seconds

Vertical Thirds

Vertical Tritones

Vertical Perfect Fourths

Vertical Perfect Fifths

Vertical Sixths

Vertical Sevenths

Vertical Octaves

Perfect Vertical Intervals

Vertical Dissonance Ratio

Vertical Minor Third Prevalence

Vertical Major Third Prevalence

Chord Duration

Partial Chords

Standard Triads

Diminished and Augmented Triads

Dominant Seventh Chords

Seventh Chords

Non-Standard Chords

Complex Chords

Minor Major Triad Ratio

Rhythm

(2) Initial Time Signature

Simple Initial Meter

Compound Initial Meter

Complex Initial Meter

Duple Initial Meter

Triple Initial Meter

Quadruple Initial Meter

Metrical Diversity

Total Number of Notes

Note Density per Quarter Note

Note Density per Quarter Note per Voice

Note Density per Quarter Note Variability

(12) Rhythmic Value Histogram

Range of Rhythmic Values

Number of Different Rhythmic Values Present

Number of Common Rhythmic Values Present

Prevalence of Very Short Rhythmic Values

Prevalence of Short Rhythmic Values

Prevalence of Medium Rhythmic Values

Prevalence of Long Rhythmic Values

Prevalence of Very Long Rhythmic Values

Prevalence of Dotted Notes

Shortest Rhythmic Value

Longest Rhythmic Value

Mean Rhythmic Value

Most Common Rhythmic Value

Prevalence of Most Common Rhythmic Value

Relative Prevalence of Most Common Rhythmic Values

Difference Between Most Common Rhythmic Values

Rhythmic Value Variability

Rhythmic Value Skewness

Rhythmic Value Kurtosis

(12) Rhythmic Value Median Run Lengths Histogram

Mean Rhythmic Value Run Length

Median Rhythmic Value Run Length

Variability in Rhythmic Value Run Lengths

(12) Rhythmic Value Variability in Run Lengths Histogram

Mean Rhythmic Value Offset

Median Rhythmic Value Offset

Variability of Rhythmic Value Offsets

Complete Rests Fraction

Partial Rests Fraction

Average Rest Fraction Across Voices

Longest Complete Rest

Longest Partial Rest

Mean Complete Rest Duration

Mean Partial Rest Duration

Median Complete Rest Duration

Median Partial Rest Duration

Variability of Complete Rest Durations

Variability of Partial Rest Durations

Variability Across Voices of Combined Rests

(161) Beat Histogram Tempo Standardized

Number of Strong Rhythmic Pulses - Tempo Standardized

Number of Moderate Rhythmic Pulses - Tempo Standardized

Num. Relatively Strong Rhythmic Pulses - Tempo Standardized

Strongest Rhythmic Pulse - Tempo Standardized

Second Strongest Rhythmic Pulse - Tempo Standardized

Harmonicity of Two Strongest Rhythmic Pulses - Tempo Stand.

Strength of Strongest Rhythmic Pulse - Tempo Standardized

Strength of Second Strongest Rhythmic Pulse - Tempo Stand.

Strength Ratio of Two Strongest Rhythmic Pulses - Tempo Stand.

Combined Strength of 2 Strongest Rhyth. Pulses - Tempo Stand.

Rhythmic Variability - Tempo Standardized

Rhythmic Looseness - Tempo Standardized

Polyrhythms - Tempo Standardized

Initial Tempo

Mean Tempo

Tempo Variability

Duration in Seconds

Note Density

Note Density Variability

Average Time Between Attacks

Average Time Between Attacks for Each Voice

Variability of Time Between Attacks

Average Variability of Time Between Attacks for Each Voice

Minimum Note Duration

Maximum Note Duration

Average Note Duration

Variability of Note Durations

Amount of Staccato

(161) Beat Histogram

Number of Strong Rhythmic Pulses

Number of Moderate Rhythmic Pulses

Number of Relatively Strong Rhythmic Pulses

Strongest Rhythmic Pulse

Second Strongest Rhythmic Pulse

Harmonicity of Two Strongest Rhythmic Pulses

Strength of Strongest Rhythmic Pulse

Strength of Second Strongest Rhythmic Pulse

Strength Ratio of Two Strongest Rhythmic Pulses

Combined Strength of Two Strongest Rhythmic Pulses

Rhythmic Variability

Rhythmic Looseness

Polyrhythms

Instrumentation

(128) Pitched Instruments Present

(47) Unpitched Instruments Present

(128) Note Prevalence of Pitched Instruments

(47) Note Prevalence of Unpitched Instruments

(128) Time Prevalence of Pitched Instruments

Variability of Note Prevalence of Pitched Instruments

Variability of Note Prevalence of Unpitched Instruments

Number of Pitched Instruments

Number of Unpitched Instruments

Unpitched Percussion Instrument Prevalence

String Keyboard Prevalence

Acoustic Guitar Prevalence

Electric Guitar Prevalence

Violin Prevalence

Saxophone Prevalence

Brass Prevalence

Woodwinds Prevalence

Orchestral Strings Prevalence

String Ensemble Prevalence

Electric Instrument Prevalence

Texture

Maximum Number of Independent Voices

Average Number of Independent Voices

Variability of Number of Independent Voices

Voice Equality - Number of Notes

Voice Equality - Note Duration

Voice Equality - Dynamics

Voice Equality - Melodic Leaps

Voice Equality - Range

Importance of Loudest Voice

Relative Range of Loudest Voice

Relative Range Isolation of Loudest Voice

Relative Range of Highest Line

Relative Note Density of Highest Line

Relative Note Durations of Lowest Line

Relative Size of Melodic Intervals in Lowest Line

Voice Overlap

Voice Separation

Variability of Voice Separation

Parallel Motion

Similar Motion

Contrary Motion

Oblique Motion

Parallel Fifths

Parallel Octaves

Dynamics

Dynamic Range

Variation of Dynamics

Variation of Dynamics in Each Voice

Average Note to Note Change in Dynamics

MEI-Specific

Number of Grace Notes

Number of Slurs

Figure 1. All features implemented by jSymbolic 2.2. Headings in bold refer to feature groups, not features. Features in

italics are new (added since jSymbolic 1.2). Numbers in parentheses indicate the size of multi-dimensional features. De-

tailed descriptions of individual features are available in jSymbolic’s manual [14] and in its GUI.

350 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018

Figure 2. The new jSymbolic 2.2 manual.

Figure 3. The redesigned jSymbolic 2.2 GUI.

3.6 I/O Formats and jMei2Midi

jSymbolic can extract features from music stored in either

MIDI or MEI [16]. MIDI, despite its well-documented

limitations, has the essential advantage that it can be read

or generated by almost any symbolic music software, and

also permits live performance encoding. This latter bene-

fit makes MIDI compatible with non-Western (and West-

ern) musics that do not conform to the quantized tunings

and rhythms typical of common practice music notation

and the symbolic music formats based on it. MIDI is also

more suitable for transcribing audio, which also rarely

conforms to strict quantization.

MEI, in turn, is a rich and extensible format that al-

lows many kinds of important information to be repre-

sented that cannot be encapsulated with MIDI. jSymbol-

ic’s new support for MEI is achieved via our custom-built

Java MEI parser and MEI-to-MIDI converter called

jMei2Midi, which can also be used as a standalone soft-

ware library. jMei2Midi performs a more extensive level

of MEI conversion than any other converter, and also

maintains a channel for preserving and transmitting in-

formation that cannot be represented in MIDI.

Although jSymbolic cannot yet directly parse formats

such as Music XML, OSC, Humdrum **kern or

LilyPond, there are fortunately many converters that can

translate such formats to MIDI or MEI for jSymbolic fea-

ture extraction. jSymbolic’s Rodan [7] wrapper can al-

ready do this with Music XML.

Extracted features can now be saved as both Weka

ARFF [24] files (a machine learning format) and as gen-

eral-purpose CSV files. Previously, ACE XML [9] was

the only output file format option.

3.7 Usability and Interfaces

It is crucial that jSymbolic be easy to learn and use for

users with diverse technical backgrounds, and that it be

easily adaptable to a broad range of use cases. This has

been a primary focus of the upgrades since version 1.2.

jSymbolic now includes a detailed HTML manual

(Figure 2) [14] and an extensive step-by-step tutorial that

includes worked exercises with both jSymbolic and the

Weka data mining framework [24]. jSymbolic’s Java im-

plementation and lack of external dependencies make the

software platform-independent and easy-to-install.

The original jSymbolic was only usable via a GUI,

which has been substantially improved in version 2.2

(Figure 3). jSymbolic also now also includes command-

line interface for batch processing, a well-documented

Java API for programmatic access and a Rodan [7] work-

flow for those wishing to take advantage of distributed

processing. New feedback on progress is provided as pro-

cessing proceeds, and cleaner error handling and more

detailed reporting in general have been instituted.

4. GENRE CLASSIFICATION EXPERIMENTS

4.1 Experimental Goals and Methodology

Our first set of experiments involved using the jSymbolic

features to classify music by genre. This was done using

the MIDI portion of our (balanced) “SAC” dataset [9],

which consists of 250 pieces of music. SAC is divided

into ten genres: Hardcore Rap, Pop Rap, Bop, Swing, Ba-

roque, Romantic, Alternative Rock, Metal, Modern Blues

and Traditional Blues. These genres can be combined

pairwise into five parent genres: Rap, Jazz, Classical,

Rock and Blues. This ontological structure permits one to

evaluate how well a given approach can distinguish be-

tween both dissimilar genres (the five parent genres) and

similar genres (the two classes comprising each pair).

Features were extracted from SAC using both the old

jSymbolic 1.2 [9] and the new jSymbolic 2.2, in order to

explore the effects of the new features. All implemented

features were used, as no systematic encoding biases

were found in the data (see Section 3.4).

 The Weka machine learning framework [24] was used

to perform 10-fold cross-validation experiments using its

SMO support vector machine implementation (with de-

fault hyper-parameter settings). No dimensionality reduc-

tion pre-processing was applied, beyond what SMO does

itself. This simple and generic classification methodology

was chosen intentionally, as an important goal of this pa-

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 351

per is to emphasize the accessibility of jSymbolic’s fea-

tures to music researchers who may have little or no

background in machine learning. A more sophisticated

approach would have been used if this were a paper spe-

cifically on classification.

4.2 Classification Results and Discussion

Corpus jSymbolic 1.2 jSymbolic 2.2

 Accuracy F-score Accuracy F-score

SAC 5 90.4% 0.809 93.2% 0.872

SAC 10 75.6% 0.703 77.6% 0.631

Table 1. SAC (5-class and 10-class) genre classification

accuracies and F-scores (averaged across 10 folds).

jSymbolic’s performance (Table 1) is quite impressive

overall, especially since such basic machine learning

techniques were used. Although there has not been a

symbolic genre classification MIREX event in over a

decade, the 2017 audio genre classification results [5]

provide a rough general context: the highest classification

accuracies were 75.9% in the 10-class Latin genre task,

76.8% in the 10-class popular genre task and 67.9% in

the 7-class K-Pop genre task.

The new 2.2 features provided better classification ac-

curacies than the old 1.2 features on both versions of

SAC, by 2.8% and 2.0%. The F-score, however, declined

for SAC 10, but improved for SAC 5.

The value of jSymbolic 2.2’s greatly expanded feature

catalogue has a scope well beyond its classification per-

formance gains. Many music researchers are interested in

specifically what it is that differentiates various kinds of

music, and a greater number of features make it possible

to explore and understand music more thoroughly and

precisely. This is revisited below.

5. COMPOSER ATTRIBUTION EXPERIMENTS

5.1 Experimental Goals and Methodology

The second set of experiments involved the same Weka-

based classification methodologies described in Section

4.1. This time, however, the experiments involved Re-

naissance composer attribution; this is much more than a

toy problem in early music studies, as there are many

pieces whose composer is unknown or disputed, and fea-

ture-based machine learning holds significant potential

for resolving such debates.

We constructed our (unbalanced) “RenComp7” dataset

by combining the Josquin (top two Rodin security levels

[19] only, based on historical sources), La Rue, Ocke-

ghem, Busnoys and Martini data from [19] with John

Miller’s Palestrina data and the Victoria data used in [20].

All files not already encoded as MIDI were converted.

The resultant RenComp7 corpus consists of 1584 pieces.

An analysis of the data found that certain features were

influenced by systematic encoding bias (see Section 3.4),

namely those based on instrumentation, dynamics and

tempo. Since including these features would have artifi-

cially inflated performance, it was necessary to exclude

certain features from consideration. As a result, only 335

of 1022 jSymbolic 1.2 feature values and 801 of 1497

jSymbolic 2.2 feature values were used.

We conducted one experiment where classification

was performed among all seven RenComp7 composers.

This was followed by two pairwise classifications that are

of particular musicological interest: Josquin vs. La Rue

(exact contemporaries who are musically similar) and

Josquin vs. Ockeghem (from different generations).

5.2 Classification Results and Discussion

Corpus jSymbolic 1.2 jSymbolic 2.2

 Accuracy F-score Accuracy F-score

All 7 Composers 87.9% 0.634 92.4% 0.715

Josq / Ockeghem 84.7% 0.818 92.6% 0.911

Josquin / La Rue 82.0% 0.771 86.3% 0.824

Table 2. RenComp7 composer attribution classification

accuracies and F-scores (averaged across 10 folds).

The overall ability of the jSymbolic 2.2 features to distin-

guish between the composers (Table 2) is unprecedented

in the automatic classification literature, and is all the

more impressive given the simple machine learning

methodology used. The excellent work of Brinkman et al.

[1] provides the best basis for comparison: the authors

used 53 features to classify 6 composers (J. S. Bach and

five Renaissance composers), and obtained success rates

of roughly 63% on average. Their approach did very well

at discriminating Bach from the Renaissance composers

(97%). This highlights both the quality of their approach

and the particular difficulty of identifying Renaissance

composers, and makes the success of the jSymbolic fea-

tures on exclusively Renaissance music all the more en-

couraging. The new 2.2 features outperformed the old 1.2

features in all cases.

5.3 Diving into Features

As noted above, the relative performance of individual

features can be at least as important in revealing musico-

logical insights as overall classification performance. As

an example of research along these lines, we asked two

experts on Renaissance music, Julie E. Cumming and Pe-

ter Schubert, to predict what characteristics they thought

would best differentiate the music of Josquin and Ocke-

ghem, based on their extensive general experience study-

ing the music of the two composers, and without any a

priori exposure to the feature data. The jSymbolic feature

data was then used to test these expectations. The results,

as outlined in Figure 4, demonstrate how some of their

predictions were indeed confirmed, but others were

shown to be incorrect. This emphasizes the general need

in musicology and music theory for empirical validation

of a wide range of widespread beliefs and assumptions

that have never been confirmed via systematic studies of

large datasets. It is hoped that jSymbolic and similar

software can help address this issue.

352 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018

Empirical Testing of Expert Predictions of Characteris-
tics More Evident in Ockeghem than Josquin

CONFIRMED: Less music for more than 4 voices
CONFIRMED: More 3-voice music
CONFIRMED: More triple meter
SAME: Less stepwise motion
SAME: More notes at the bottom of the range
SAME: More chords (or simultaneities) without a third
SAME: More varied rhythmic note values
OPPOSITE: More large leaps (larger than a 5th)
OPPOSITE: More dissonance

Figure 4. Results of empirical testing of expert predic-

tions. “CONFIRMED” means the expectations were

empirically correct, “SAME” indicates no statistically

significant difference between the two composers and

“OPPOSITE” means the expected characteristic was in-

fact more associated with Josquin than Ockeghem.

Next, in order to demonstrate the types of novel musi-

cological insights jSymbolic’s features can reveal, Weka

was used to apply seven statistical feature analysis tech-

niques (based on feature-class correlations, information

gain, etc.) to highlight the features that most effectively

distinguish the composers in each of the two composer

pairs. The results were compiled into ranked feature lists.

 It turns out that a combination of rhythmic character-

istics are particularly important in distinguishing Josquin

from Ockeghem and, furthermore, Ockeghem tends to

have more vertical sixths and diminished triads, as well

as longer melodic arcs. With respect to Josquin and La

Rue, Josquin tends to have: more vertical unisons and

thirds; fewer vertical fourths and octaves; and more me-

lodic octaves.

6. CONCLUSIONS

jSymbolic is a powerful and accessible tool that music

researchers can apply to diverse research areas and types

of music. It can also serve as a platform that researchers

can use to develop their own bespoke features. It is hoped

that this will help address the paucity of symbolic music

software produced by the MIR community to date, rela-

tive to the extensive range of software it has produced

associated with audio and other data, and will encourage

greater MIR engagement with musicologists and music

theorists. jSymbolic’s easy-to-use interfaces and exten-

sive documentation are intended to facilitate this.

Although jSymbolic features can certainly be used in

classification tasks, as in the experiments described

above, the direct study of feature values also has im-

portant potential. Such work can combine expert manual

study with the use of statistical analysis techniques. Re-

search can consist of empirical validation of existing hy-

potheses or of purely exploratory research, all involving

the study of potentially huge quantities of music. Both

approaches can help scholars arrive at initially unintuitive

but potentially crucial musicological insights.

In terms of experimental conclusions, the results from

Sections 4 and 5 permit the following observations:

 The new jSymbolic 2.2 features were quite effective

in both genre and composer classification, even using

generic machine learning approaches. They were able

to distinguish between seven Renaissance composers

92.4% of the time, and achieved 93.2% genre classi-

fication accuracy when applied to a 5-genre ontology,

and 77.6% when classifying amongst 10 genres.

 The new jSymbolic 2.2 features produced better clas-

sification accuracies than the old jSymbolic 1.2 fea-

tures in all tests, and better F-scores in all but one.

 The new jSymbolic 2.2 features were effective in

testing expert expectations about differences in the

musical styles of pairs of Renaissance composers,

and in revealing additional unanticipated differences.

7. FUTURE WORK

We will continue to work with musicologists and music

theorists by helping them carry out research on large mu-

sical datasets with jSymbolic. We will also assist them in

implementing specialized features of their own. A partic-

ular focus of this collaborative work will be placed on the

determination of which features are most effective in dis-

tinguishing different musical classes (composers, genres,

regions, etc.), and on investigating why. We will also ex-

pand our work on using machine learning to help resolve

controversial composer attribution. We also intend to

work on expanding the extent to which jSymbolic can

extract features from non-Western musics by adding still

more relevant features.

We are currently working on integrating jSymbolic2

into the SIMSSA/MIRAI architecture [10], so that re-

searchers can search the project’s rich music databases

using content-based queries formulated using feature val-

ues and ranges. A researcher could thus filter results

based on the amount of chromaticism in a piece, for ex-

ample, or the amount of parallel motion between voices.

Of even greater interest, queries could potentially be for-

mulated based on hard-to-quantify high-level characteris-

tics, such as degree of tonality, made possible by machine

learning models trained on jSymbolic features.

Related to this project, we also plan to apply jSymbol-

ic to symbolic files that have been generated using optical

music recognition or automatic audio transcription soft-

ware, and to investigate the robustness of the features to

such error-prone data. In addition to making an enormous

amount of new music available for symbolic feature ex-

traction, doing this successfully would also greatly facili-

tate multimodal research. The huge Lakh dataset [18] can

also be studied with similar goals.

An additional priority will be to add new parsers so

that features can be extracted from additional file formats.

We are especially looking at adding features specially de-

signed for music encoded using mensural or other early

music notations. Finally, we intend to work towards port-

ing jSymbolic2’s new features to other platforms, espe-

cially music21 [4].

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 353

8. ACKNOWLEDGEMENTS

We would like to thank the Social Sciences and Humani-

ties Research Council of Canada (SSHRC) and the Fonds

de recherche du Québec - Société et culture (FRQSC) for

their generous funding. We would also like to

acknowledge the formidable contributions of our many

collaborators on the MIRAI and SIMSSA projects, espe-

cially Tristano Tenaglia.

9. REFERENCES

[1] A. Brinkman, D. Shanahan and C. Sapp, “Musical

stylometry, machine learning and attribution studies:

A semi-supervised approach to the works of Josquin,”

Proc. of the Biennial Int. Conf. on Music Perception

and Cognition, pp. 91–97, 2016.

[2] D. C. Corrêa and F. A. Rodrigues, “A survey on

symbolic data-based music genre classification,”

Expert Systems with Applications, Vol. 60, pp. 190–

210, 2016.

[3] J. E. Cumming et al., “Methodologies for creating

symbolic corpora of Western music before 1600,”

Proc. of the Int. Soc. for Music Information

Retrieval Conf., accepted for publication, 2018.

[4] M. S. Cuthbert, C. Ariza and L. Friedland, “Feature

extraction and machine learning on symbolic music

using the music21 toolkit,” Proc. of the Int. Soc. for

Music Information Retrieval Conf., pp. 387–92,

2011.

[5] J. S. Downie et al., “MIREX2017 Results - MIREX

Wiki,” Music-ir.org, 2016. [Online]. Available:

http://www.music-

ir.org/mirex/wiki/2017:MIREX2017_Results.

[Accessed: 28-March-2018].

[6] T. Eerola and P. Toiviainen, “MIR in Matlab: The

MIDI Toolbox,” Proc. of the Int. Conf. on Music

Information Retrieval, pp. 22–7, 2004.

[7] A. Hankinson, “Optical music recognition

infrastructure for large-scale music document

analysis,” Ph.D. diss., Schulich School of Music,

McGill Univ., Montreal, Canada, 2015.

[8] D. Huron, “Music information processing using the

Humdrum toolkit: Concepts, examples, and

lessons,” Computer Music J., Vol. 26, No. 2, pp. 11–

26, 2002.

[9] C. McKay, “Automatic music classification with

jMIR,” Ph.D. diss., Schulich School of Music,

McGill Univ., Montreal, Canada, 2010.

[10] C. McKay and I. Fujinaga, “Building an

infrastructure for a 21st-century global music

library,” Int. Soc. for Music Information Retrieval

Conf. Late Breaking and Demo Papers, 2015.

[11] C. McKay et al., “Using statistical feature extraction

to distinguish the styles of different composers,” 45
th

Medieval and Renaissance Music Conf., 2017.

[12] C. McKay et al., “Characterizing composers using

jSymbolic2 features”, Extended Abstracts for the

Late-Breaking Demo Session of the Int. Soc. for

Music Information Retrieval Conf., 2017.

[13] C. McKay, “jMIR,” SourceForge.net,

SourceForge.net, 2018. [Online]. Available:

http://jmir.sourceforge.net. [Accessed: 6-June-2018].

[14] C. McKay, “jSymbolic Manual,” SourceForge.net,

2018. [Online]. Available:

http://jmir.sourceforge.net/manuals/jSymbolic_manu

al/home.html. [Accessed: 6-June-2018].

[15] P. J. Ponce de León and J. M. Iñesta, “Statistical

description models for melody analysis and

characterization,” Proc. of the Int. Computer Music

Conf., pp. 149–56, 2004.

[16] P. Roland, “The music encoding initiative (MEI),”

Proc. of the First Int. Conf. on Musical Applications

Using XML, pp. 55–9, 2002.

[17] C. Raffel, and D. P. W. Ellis, “Intuitive analysis,

creation and manipulation of MIDI data with

pretty_midi,” Int. Soc. for Music Information

Retrieval Conf. Late Breaking and Demo Papers,

2014.

[18] C. Raffel. “Learning-based methods for comparing

sequences, with applications to audio-to-MIDI

alignment and matching,” Ph.D. diss., Columbia

Univ., New York, USA, 2016.

[19] J. Rodin, C. S. Sapp and C. Bokulich, “The Josquin

Research Project,” Stanford Univ., 2017. [Online].

Available: http://josquin.stanford.edu. [Accessed:

28-March-2018].

[20] A. Sigler, J. Wild and E. Handelman, “Schematizing

the treatment of dissonance in 16
th

-century

counterpoint,” Proc. of the Int. Soc. for Music

Information Retrieval Conference, pp. 645–51, 2015.

[21] B. L. Sturm, “A simple method to determine if a

music information retrieval system is a ‘horse’,”

IEEE Trans. on Multimedia, Vol. 16, No. 6, pp.

1636–44, 2014.

[22] D. Temperley, The cognition of basic musical

structures. Cambridge, MA: MIT Press, 2001.

[23] E. Verdaguer Morales, “Anàlisi i generació

algorísmica de línies de baix en estil Funk,” Thesis,

Pompeu Fabra Univ., Barcelona, Spain, 2014.

[24] I. H. Witten, E. Frank and M. A. Hall, Data mining:

Practical machine learning tools and techniques.

New York: Morgan Kaufman, 2011.

354 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018

