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ABSTRACT 

jSymbolic is an open-source platform for extracting fea-

tures from symbolic music. These features can serve as 

inputs to machine learning algorithms, or they can be 

analyzed statistically to derive musicological insights.  

jSymbolic implements 246 unique features, compris-

ing 1497 different values, making it by far the most ex-

tensive symbolic feature extractor to date. These features 

are designed to be applicable to a diverse range of mu-

sics, and may be extracted from both symbolic music 

files as a whole and from windowed subsets of them. Re-

searchers can also use jSymbolic as a platform for devel-

oping and distributing their own bespoke features, as it 

has an easily extensible plug-in architecture. 

In addition to implementing 135 new unique features, 

version 2.2 of jSymbolic places a special focus on func-

tionality for avoiding biases associated with how symbol-

ic music is encoded. In addition, new interface elements 

and documentation improve convenience, ease-of-use and 

accessibility to researchers with diverse ranges of tech-

nical expertise. jSymbolic now includes a GUI, com-

mand-line interface, API , flexible configuration file for-

mat, extensive manual and detailed tutorial. 

The enhanced effectiveness of jSymbolic 2.2’s fea-

tures is demonstrated in two sets of experiments: 1) genre 

classification and 2) Renaissance composer attribution. 

1. INTRODUCTION 

The majority of research performed by musicologists, 

music theorists, music librarians and others focuses on 

symbolic music representations. Unfortunately, relatively 

few MIR-oriented software tools are available to assist 

such research, particularly with respect to research in-

volving the increasingly large corpora being studied. 

jSymbolic is an open-source Java framework designed 

to at least partially address this shortcoming. Its primary 

function is to extract a large number of features (statisti-

cal descriptors) from potentially huge collections of digi-

tally-represented symbolic music. These features can then 

be used to directly assist music researchers in analysis 

and search-based tasks, as well as in research incorporat-

ing machine learning. 

Possible research applications include: empirical test-

ing of existing musicological theories [11]; exploratory 

research that can reveal unexpected insights [11]; recon-

ciling historical evidence with content-based data [12]; 

annotation of large corpora to allow content-based 

searches [10]; performing multimodal research by com-

bining symbolic features with audio, textual and other 

features [9]; and generating novel music in specific styles 

by using feature values as stylistic guideposts [23].  

jSymbolic 2.2 has been dramatically improved and ex-

panded since its last properly published version (1.2) was 

released in 2010 [9]. It is also a component of the larger 

jMIR research software framework [9]. jSymbolic and 

the other jMIR components (including source code) can 

all be downloaded from [13].  

2. RELATED RESEARCH 

Surprisingly few frameworks designed specifically for 

extracting features from symbolic music have been pub-

lished, although there are several MIR toolkits for analyz-

ing symbolic music more generally. The MIDI Toolbox 

[6] is one particularly well-known system implemented in 

Matlab. The powerful music21 analysis toolkit [4] in-

cludes ports of 57 of the original jSymbolic 1.2 features, 

and also offers substantial additional useful functionality.  

The Humdrum toolkit [8] is a well-known tool for ana-

lyzing music, although it does not extract features as 

such. The Melisma Music Analyzer [22] is another excel-

lent analysis-oriented system, and pretty_midi [17] pro-

vides helpful creation, manipulation and extraction tools. 

Additional work has been published where symbolic 

feature extraction is performed as a part of larger research 

projects, but where the feature extraction code has not 

itself been published. Standouts include [1] and [15]. 

Corrêa and Rodrigues have written a nice survey of relat-

ed symbolic genre classification research [2]. 

To the best of our knowledge, there is no existing 

software that extracts anywhere near the number or diver-

sity of features as jSymbolic, nor is there any with the 

same focus on broad accessibility and extensibility. 
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3. CHARACTERISTICS OF JSYMBOLIC 

3.1 Features Extracted 

jSymbolic 2.2 extracts 246 unique features, some of 

which are multidimensional, for a total of 1497 values 

(version 1.2 extracted 111 features and 1022 values). De-

tails on the original musicological and music theoretical 

sources and motivations for the features are available in 

[9]. The features can be divided into eight general groups: 

 Pitch Statistics: How common are various pitches 

and pitch classes relative to one another? How are 

they distributed and how much do they vary?  

 Melodic Intervals: What melodic intervals are pre-

sent? How much melodic variation is there? What can 

be observed from melodic contour measurements?  

 Chords and Vertical Intervals: What vertical inter-

vals are present? What types of chords do they repre-

sent? What kinds of harmonic movement are present? 

 Rhythm: Information associated with note attacks, 

durations and rests, measured in ways that are both 

dependent and independent of tempo. Information on 

rhythmic variability, including rubato, and meter.  

 Instrumentation: Which instruments are present, 

and which are emphasized relative to others? Both 

pitched and non-pitched instruments are considered.  

 Texture: How many independent voices are there 

and how do they interact (e.g. parallel vs. contrary 

motion)? What is the relative importance of voices?  

 Dynamics: How loud are notes and what kinds of 

variations in dynamics occur?  

 MEI-Specific: Information that cannot be represent-

ed explicitly in MIDI (e.g. slurs) but can be in the 

Music Encoding Initiative (MEI) file format [16]. 

See Figure 1 for a complete list of the jSymbolic 2.2 fea-

tures, including indications of which ones are new, as 

well as which ones are multidimensional.  

These features are designed to be wide-ranging, in or-

der to be applicable to a diverse range of musics from a 

variety of cultures, styles and time periods. A few fea-

tures are intentionally partially redundant; for example, 

the Vertical Interval Histogram indicates the number of 

minor thirds and major thirds (among other things) sepa-

rately, but the Vertical Thirds feature combines them. 

Such partial redundancies help highlight patterns in alter-

native ways to musicologists examining features. Also, 

some features are based on information explicitly (but not 

necessarily correctly) specified as metadata in the input 

files, such as meter or key, and others attempt to infer 

such information directly from the music itself. 

3.2 Designing New Features 

Extensibility and modularity are key priorities, as jSym-

bolic is intended to be a platform for developing and test-

ing new features just as much as it is an out-of-the-box 

tool. New features can be added as plug-ins simply by 

extending an existing Java class, and it is easy to incorpo-

rate the values of existing features into new features in 

order to iteratively build new features of increasing so-

phistication. jSymbolic also automatically handles all in-

frastructure relating to feature dependencies and extrac-

tion scheduling. The overall design of the software is ex-

tensible, as is its configuration file format. 

A tool has been added for exploring MIDI messages 

directly at a low-level, in order to help debug new fea-

tures. jSymbolic also now automatically validates and 

error-checks new features as they are added, and there is 

substantial new general unit testing infrastructure. 

3.3 Configuration Files 

jSymbolic now includes a flexible configuration file for-

mat that can be used for batch processing, as a way of ap-

plying consistent settings across sessions and for keeping 

a record of settings used in individual experiments. These 

configuration files can be saved with the GUI, or they can 

be edited directly. 

3.4 Avoiding Systematic Encoding Bias 

One must always be careful that extracted features are not 

correlated with the source of data rather than its underly-

ing musical content. This could happen, for example, in a 

corpus constructed by joining data from different sources, 

where each source uses different encoding conventions 

(e.g. different instrumentation designations for voices, or 

different interpretations of tempo markings). Such issues 

have been discussed regarding audio [21], but less so for 

symbolic data. Ideally, all data in a corpus would be sys-

tematically encoded in the same way, but this is rarely the 

case  in practice. 

jSymbolic therefore now includes functionality for 

generating “consistency reports.” These automatically 

check sets of symbolic music files for such biases.  

An optional “safe” configuration file is also provided, 

which disables features associated with instrumentation, 

dynamics, microtonal pitches and tempo, as these tend to 

be particularly vulnerable to encoding bias. This is espe-

cially useful for musics where these qualities are typically 

unspecified, such as Renaissance music. 

Many of jSymbolic 2.2’s new features are also specifi-

cally designed to avoid such biases. For example, many 

of the new rhythmic features are tempo-independent, so 

that they can be used even if tempo is source-correlated, 

while the old tempo-linked features can still be used if 

tempos are meaningfully and consistently encoded. 

[3] presents a more detailed analysis of related issues, 

including empirical results produced with jSymbolic 2.2. 

3.5 Windowed Extraction 

Users can now perform windowed feature extraction with 

jSymbolic, with overlapping or non-overlapping win-

dows, as well as extraction over entire pieces. Although 

common with audio, this ability to extract features sepa-

rately from subsets of a piece is rare in the symbolic do-

main, and enables powerful new kinds of analysis. 
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Overall Pitch Statistics 

(128) Basic Pitch Histogram 

(12) Pitch Class Histogram 

(12) Folded Fifths Pitch Class Histogram 

Number of Pitches 

Number of Pitch Classes 

Number of Common Pitches 

Number of Common Pitch Classes 

Range 

Importance of Bass Register 

Importance of Middle Register 

Importance of High Register 

Dominant Spread 

Strong Tonal Centres 

Mean Pitch 

Mean Pitch Class 

Most Common Pitch 

Most Common Pitch Class 

Prevalence of Most Common Pitch 

Prevalence of Most Common Pitch Class 

Relative Prevalence of Top Pitches 

Relative Prevalence of Top Pitch Classes 

Interval Between Most Prevalent Pitches 

Interval Between Most Prevalent Pitch Classes 

Pitch Variability  

Pitch Class Variability  

Pitch Class Variability After Folding 

Pitch Skewness 

Pitch Class Skewness 

Pitch Class Skewness After Folding 

Pitch Kurtosis 

Pitch Class Kurtosis 

Pitch Class Kurtosis After Folding 

Major or Minor 

First Pitch 

First Pitch Class 

Last Pitch 

Last Pitch Class 

Glissando Prevalence 

Average Range of Glissandos 

Vibrato Prevalence 

Microtone Prevalence 
 

Melodic Intervals 

(128) Melodic Interval Histogram 

Most Common Melodic Interval 

Mean Melodic Interval 

Number of Common Melodic Intervals 

Distance Between Most Prevalent Melodic Intervals 

Prevalence of Most Common Melodic Interval 

Relative Prevalence of Most Common Melodic Intervals 

Amount of Arpeggiation 

Repeated Notes 

Chromatic Motion 

Stepwise Motion 

Melodic Thirds 

Melodic Perfect Fourths 

Melodic Tritones 

Melodic Perfect Fifths 

Melodic Sixths 

Melodic Sevenths 

Melodic Octaves 

Melodic Large Intervals 

Minor Major Melodic Third Ratio 

Melodic Embellishments 

Direction of Melodic Motion 

Average Length of Melodic Arcs 

Average Interval Spanned by Melodic Arcs 

Melodic Pitch Variety 
 

Chords and Vertical Intervals 

(128) Vertical Interval Histogram 

(12) Wrapped Vertical Interval Histogram 

(11) Chord Type Histogram 

Average Number of Simultaneous Pitch Classes 

Variability of Number of Simultaneous Pitch Classes 

Average Number of Simultaneous Pitches 

Variability of Number of Simultaneous Pitches 

Most Common Vertical Interval 

Second Most Common Vertical Interval 

Distance Between Two Most Common Vertical Intervals 

Prevalence of Most Common Vertical Interval 

Prevalence of Second Most Common Vertical Interval 

Prevalence Ratio of Two Most Common Vertical Intervals 

Vertical Unisons 

Vertical Minor Seconds 

Vertical Thirds 

Vertical Tritones 

Vertical Perfect Fourths 

Vertical Perfect Fifths 

Vertical Sixths 

Vertical Sevenths 

Vertical Octaves 

Perfect Vertical Intervals 

Vertical Dissonance Ratio 

Vertical Minor Third Prevalence 

Vertical Major Third Prevalence 

Chord Duration 

Partial Chords 

Standard Triads 

Diminished and Augmented Triads 

Dominant Seventh Chords 

Seventh Chords 

Non-Standard Chords 

Complex Chords 

Minor Major Triad Ratio 
 

Rhythm 

(2) Initial Time Signature 

Simple Initial Meter 

Compound Initial Meter 

Complex Initial Meter 

Duple Initial Meter 

Triple Initial Meter 

Quadruple Initial Meter 

Metrical Diversity 

Total Number of Notes 

Note Density per Quarter Note 

Note Density per Quarter Note per Voice 

Note Density per Quarter Note Variability 

(12) Rhythmic Value Histogram 

Range of Rhythmic Values 

Number of Different Rhythmic Values Present 

Number of Common Rhythmic Values Present 

Prevalence of Very Short Rhythmic Values 

Prevalence of Short Rhythmic Values 

Prevalence of Medium Rhythmic Values 

Prevalence of Long Rhythmic Values 

Prevalence of Very Long Rhythmic Values 

Prevalence of Dotted Notes 

Shortest Rhythmic Value 

Longest Rhythmic Value 

Mean Rhythmic Value 

Most Common Rhythmic Value 

Prevalence of Most Common Rhythmic Value 

Relative Prevalence of Most Common Rhythmic Values 

Difference Between Most Common Rhythmic Values 

Rhythmic Value Variability 

Rhythmic Value Skewness 

Rhythmic Value Kurtosis 

(12) Rhythmic Value Median Run Lengths Histogram 

Mean Rhythmic Value Run Length 

Median Rhythmic Value Run Length 

Variability in Rhythmic Value Run Lengths 

(12) Rhythmic Value Variability in Run Lengths Histogram 

Mean Rhythmic Value Offset 

Median Rhythmic Value Offset 

Variability of Rhythmic Value Offsets 

Complete Rests Fraction 

Partial Rests Fraction 

Average Rest Fraction Across Voices 

Longest Complete Rest 

Longest Partial Rest 

Mean Complete Rest Duration 

Mean Partial Rest Duration 

Median Complete Rest Duration 

Median Partial Rest Duration 

Variability of Complete Rest Durations 

Variability of Partial Rest Durations 

Variability Across Voices of Combined Rests 

(161) Beat Histogram Tempo Standardized 

Number of Strong Rhythmic Pulses - Tempo Standardized 

Number of Moderate Rhythmic Pulses - Tempo Standardized 

Num. Relatively Strong Rhythmic Pulses - Tempo Standardized 

Strongest Rhythmic Pulse - Tempo Standardized 

Second Strongest Rhythmic Pulse - Tempo Standardized 

Harmonicity of Two Strongest Rhythmic Pulses - Tempo Stand. 

Strength of Strongest Rhythmic Pulse - Tempo Standardized 

Strength of Second Strongest Rhythmic Pulse - Tempo Stand. 

Strength Ratio of Two Strongest Rhythmic Pulses - Tempo Stand. 

Combined Strength of 2 Strongest Rhyth. Pulses - Tempo Stand. 

Rhythmic Variability - Tempo Standardized 

Rhythmic Looseness - Tempo Standardized 

Polyrhythms - Tempo Standardized 

Initial Tempo 

Mean Tempo 

Tempo Variability 

Duration in Seconds 

Note Density 

Note Density Variability 

Average Time Between Attacks 

Average Time Between Attacks for Each Voice 

Variability of Time Between Attacks 

Average Variability of Time Between Attacks for Each Voice 

Minimum Note Duration 

Maximum Note Duration 

Average Note Duration 

Variability of Note Durations 

Amount of Staccato 

(161) Beat Histogram 

Number of Strong Rhythmic Pulses 

Number of Moderate Rhythmic Pulses 

Number of Relatively Strong Rhythmic Pulses 

Strongest Rhythmic Pulse 

Second Strongest Rhythmic Pulse 

Harmonicity of Two Strongest Rhythmic Pulses 

Strength of Strongest Rhythmic Pulse 

Strength of Second Strongest Rhythmic Pulse 

Strength Ratio of Two Strongest Rhythmic Pulses 

Combined Strength of Two Strongest Rhythmic Pulses 

Rhythmic Variability 

Rhythmic Looseness 

Polyrhythms 
 

Instrumentation 

(128) Pitched Instruments Present 

(47) Unpitched Instruments Present 

(128) Note Prevalence of Pitched Instruments 

(47) Note Prevalence of Unpitched Instruments 

(128) Time Prevalence of Pitched Instruments 

Variability of Note Prevalence of Pitched Instruments 

Variability of Note Prevalence of Unpitched Instruments 

Number of Pitched Instruments 

Number of Unpitched Instruments 

Unpitched Percussion Instrument Prevalence 

String Keyboard Prevalence 

Acoustic Guitar Prevalence 

Electric Guitar Prevalence 

Violin Prevalence 

Saxophone Prevalence 

Brass Prevalence 

Woodwinds Prevalence 

Orchestral Strings Prevalence 

String Ensemble Prevalence 

Electric Instrument Prevalence 
 

Texture 

Maximum Number of Independent Voices 

Average Number of Independent Voices 

Variability of Number of Independent Voices 

Voice Equality - Number of Notes 

Voice Equality - Note Duration 

Voice Equality - Dynamics 

Voice Equality - Melodic Leaps 

Voice Equality - Range 

Importance of Loudest Voice 

Relative Range of Loudest Voice 

Relative Range Isolation of Loudest Voice 

Relative Range of Highest Line 

Relative Note Density of Highest Line 

Relative Note Durations of Lowest Line 

Relative Size of Melodic Intervals in Lowest Line 

Voice Overlap 

Voice Separation 

Variability of Voice Separation 

Parallel Motion 

Similar Motion 

Contrary Motion 

Oblique Motion 

Parallel Fifths 

Parallel Octaves 
 

Dynamics 

Dynamic Range 

Variation of Dynamics 

Variation of Dynamics in Each Voice 

Average Note to Note Change in Dynamics 
 

MEI-Specific 

Number of Grace Notes 

Number of Slurs 

Figure 1. All features implemented by jSymbolic 2.2. Headings in bold refer to feature groups, not features. Features in 

italics are new (added since jSymbolic 1.2). Numbers in parentheses indicate the size of multi-dimensional features. De-

tailed descriptions of individual features are available in jSymbolic’s manual [14] and in its GUI. 
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Figure 2. The new jSymbolic 2.2 manual. 

 

Figure 3. The redesigned jSymbolic 2.2 GUI. 

3.6 I/O Formats and jMei2Midi 

jSymbolic can extract features from music stored in either 

MIDI or MEI [16]. MIDI, despite its well-documented 

limitations, has the essential advantage that it can be read 

or generated by almost any symbolic music software, and 

also permits live performance encoding. This latter bene-

fit makes MIDI compatible with non-Western (and West-

ern) musics that do not conform to the quantized tunings 

and rhythms typical of common practice music notation 

and the symbolic music formats based on it. MIDI is also 

more suitable for transcribing audio, which also rarely 

conforms to strict quantization. 

MEI, in turn, is a rich and extensible format that al-

lows many kinds of important information to be repre-

sented that cannot be encapsulated with MIDI. jSymbol-

ic’s new support for MEI is achieved via our custom-built 

Java MEI parser and MEI-to-MIDI converter called 

jMei2Midi, which can also be used as a standalone soft-

ware library. jMei2Midi performs a more extensive level 

of MEI conversion than any other converter, and also 

maintains a channel for preserving and transmitting in-

formation that cannot be represented in MIDI. 

Although jSymbolic cannot yet directly parse formats 

such as Music XML, OSC, Humdrum **kern or 

LilyPond, there are fortunately many converters that can 

translate such formats to MIDI or MEI for jSymbolic fea-

ture extraction. jSymbolic’s Rodan [7] wrapper can al-

ready do this with Music XML. 

Extracted features can now be saved as both Weka 

ARFF [24] files (a machine learning format) and as gen-

eral-purpose CSV files. Previously, ACE XML [9] was 

the only output file format option. 

3.7 Usability and Interfaces 

It is crucial that jSymbolic be easy to learn and use for 

users with diverse technical backgrounds, and that it be 

easily adaptable to a broad range of use cases. This has 

been a primary focus of the upgrades since version 1.2. 

jSymbolic now includes a detailed HTML manual 

(Figure 2) [14] and an extensive step-by-step tutorial that 

includes worked exercises with both jSymbolic and the 

Weka data mining framework [24]. jSymbolic’s Java im-

plementation and lack of external dependencies make the 

software platform-independent and easy-to-install. 

The original jSymbolic was only usable via a GUI, 

which has been substantially improved in version 2.2 

(Figure 3). jSymbolic also now also includes command-

line interface for batch processing, a well-documented 

Java API for programmatic access and a Rodan [7] work-

flow for those wishing to take advantage of distributed 

processing. New feedback on progress is provided as pro-

cessing proceeds, and cleaner error handling and more 

detailed reporting in general have been instituted. 

4. GENRE CLASSIFICATION EXPERIMENTS 

4.1 Experimental Goals and Methodology 

Our first set of experiments involved using the jSymbolic 

features to classify music by genre. This was done using 

the MIDI portion of our (balanced) “SAC” dataset [9], 

which consists of 250 pieces of music. SAC is divided 

into ten genres: Hardcore Rap, Pop Rap, Bop, Swing, Ba-

roque, Romantic, Alternative Rock, Metal, Modern Blues 

and Traditional Blues. These genres can be combined 

pairwise into five parent genres: Rap, Jazz, Classical, 

Rock and Blues. This ontological structure permits one to 

evaluate how well a given approach can distinguish be-

tween both dissimilar genres (the five parent genres) and 

similar genres (the two classes comprising each pair). 

Features were extracted from SAC using both the old 

jSymbolic 1.2 [9] and the new jSymbolic 2.2, in order to 

explore the effects of the new features. All implemented 

features were used, as no systematic encoding biases 

were found in the data (see Section 3.4). 

 The Weka machine learning framework [24] was used 

to perform 10-fold cross-validation experiments using its 

SMO support vector machine implementation (with de-

fault hyper-parameter settings). No dimensionality reduc-

tion pre-processing was applied, beyond what SMO does 

itself. This simple and generic classification methodology 

was chosen intentionally, as an important goal of this pa-
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per is to emphasize the accessibility of jSymbolic’s fea-

tures to music researchers who may have little or no 

background in machine learning. A more sophisticated 

approach would have been used if this were a paper spe-

cifically on classification. 

4.2 Classification Results and Discussion 
 

Corpus jSymbolic 1.2 jSymbolic 2.2 

 Accuracy F-score Accuracy F-score 

SAC 5 90.4% 0.809 93.2% 0.872 

SAC 10 75.6% 0.703 77.6% 0.631 

Table 1. SAC (5-class and 10-class) genre classification 

accuracies and F-scores (averaged across 10 folds).  

jSymbolic’s performance (Table 1) is quite impressive 

overall, especially since such basic machine learning 

techniques were used. Although there has not been a 

symbolic genre classification MIREX event in over a 

decade, the 2017 audio genre classification results [5] 

provide a rough general context: the highest classification 

accuracies were 75.9% in the 10-class Latin genre task, 

76.8% in the 10-class popular genre task and 67.9% in 

the 7-class K-Pop genre task. 

The new 2.2 features provided better classification ac-

curacies than the old 1.2 features on both versions of 

SAC, by 2.8% and 2.0%. The F-score, however, declined 

for SAC 10, but improved for SAC 5. 

The value of jSymbolic 2.2’s greatly expanded feature 

catalogue has a scope well beyond its classification per-

formance gains. Many music researchers are interested in 

specifically what it is that differentiates various kinds of 

music, and a greater number of features make it possible 

to explore and understand music more thoroughly and 

precisely. This is revisited below. 

5. COMPOSER ATTRIBUTION EXPERIMENTS 

5.1 Experimental Goals and Methodology 

The second set of experiments involved the same Weka-

based classification methodologies described in Section 

4.1. This time, however, the experiments involved Re-

naissance composer attribution; this is much more than a 

toy problem in early music studies, as there are many 

pieces whose composer is unknown or disputed, and fea-

ture-based machine learning holds significant potential 

for resolving such debates. 

We constructed our (unbalanced) “RenComp7” dataset 

by combining the Josquin (top two Rodin security levels 

[19] only, based on historical sources), La Rue, Ocke-

ghem, Busnoys and Martini data from [19] with John 

Miller’s Palestrina data and the Victoria data used in [20]. 

All files not already encoded as MIDI were converted. 

The resultant RenComp7 corpus consists of 1584 pieces. 

An analysis of the data found that certain features were 

influenced by systematic encoding bias (see Section 3.4), 

namely those based on instrumentation, dynamics and 

tempo. Since including these features would have artifi-

cially inflated performance, it was necessary to exclude 

certain features from consideration. As a result, only 335 

of 1022 jSymbolic 1.2 feature values and 801 of 1497 

jSymbolic 2.2 feature values were used.  

We conducted one experiment where classification 

was performed among all seven RenComp7 composers. 

This was followed by two pairwise classifications that are 

of particular musicological interest: Josquin vs. La Rue 

(exact contemporaries who are musically similar) and 

Josquin vs. Ockeghem (from different generations). 

5.2 Classification Results and Discussion 
 

Corpus jSymbolic 1.2 jSymbolic 2.2 

 Accuracy F-score Accuracy F-score 

All 7 Composers  87.9% 0.634 92.4% 0.715 

Josq / Ockeghem 84.7% 0.818 92.6% 0.911 

Josquin / La Rue 82.0% 0.771 86.3% 0.824 

Table 2. RenComp7 composer attribution classification 

accuracies and F-scores (averaged across 10 folds).  

The overall ability of the jSymbolic 2.2 features to distin-

guish between the composers (Table 2) is unprecedented 

in the automatic classification literature, and is all the 

more impressive given the simple machine learning 

methodology used. The excellent work of Brinkman et al. 

[1] provides the best basis for comparison: the authors 

used 53 features to classify 6 composers (J. S. Bach and 

five Renaissance composers), and obtained success rates 

of roughly 63% on average. Their approach did very well 

at discriminating Bach from the Renaissance composers 

(97%). This highlights both the quality of their approach 

and the particular difficulty of identifying Renaissance 

composers, and makes the success of the jSymbolic fea-

tures on exclusively Renaissance music all the more en-

couraging. The new 2.2 features outperformed the old 1.2 

features in all cases.  

5.3 Diving into Features 

As noted above, the relative performance of individual 

features can be at least as important in revealing musico-

logical insights as overall classification performance. As 

an example of research along these lines, we asked two 

experts on Renaissance music, Julie E. Cumming and Pe-

ter Schubert, to predict what characteristics they thought 

would best differentiate the music of Josquin and Ocke-

ghem, based on their extensive general experience study-

ing the music of the two composers, and without any a 

priori exposure to the feature data. The jSymbolic feature 

data was then used to test these expectations. The results, 

as outlined in Figure 4, demonstrate how some of their 

predictions were indeed confirmed, but others were 

shown to be incorrect. This emphasizes the general need 

in musicology and music theory for empirical validation 

of a wide range of widespread beliefs and assumptions 

that have never been confirmed via systematic studies of 

large datasets. It is hoped that jSymbolic and similar 

software can help address this issue. 
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Empirical Testing of Expert Predictions of Characteris-
tics More Evident in Ockeghem than Josquin 

CONFIRMED: Less music for more than 4 voices 
CONFIRMED: More 3-voice music 
CONFIRMED: More triple meter 
SAME: Less stepwise motion 
SAME: More notes at the bottom of the range 
SAME: More chords (or simultaneities) without a third 
SAME: More varied rhythmic note values 
OPPOSITE: More large leaps (larger than a 5th) 
OPPOSITE: More dissonance 

Figure 4. Results of empirical testing of expert predic-

tions. “CONFIRMED” means the expectations were 

empirically correct, “SAME” indicates no statistically 

significant difference between the two composers and 

“OPPOSITE” means the expected characteristic was in-

fact more associated with Josquin than Ockeghem. 

Next, in order to demonstrate the types of novel musi-

cological insights jSymbolic’s features can reveal, Weka 

was used to apply seven statistical feature analysis tech-

niques (based on feature-class correlations, information 

gain, etc.) to highlight the features that most effectively 

distinguish the composers in each of the two composer 

pairs. The results were compiled into ranked feature lists. 

 It turns out that a combination of rhythmic character-

istics are particularly important in distinguishing Josquin 

from Ockeghem and, furthermore, Ockeghem tends to 

have more vertical sixths and diminished triads, as well 

as longer melodic arcs. With respect to Josquin and La 

Rue, Josquin tends to have: more vertical unisons and 

thirds; fewer vertical fourths and octaves; and more me-

lodic octaves.  

6. CONCLUSIONS 

jSymbolic is a powerful and accessible tool that music 

researchers can apply to diverse research areas and types 

of music. It can also serve as a platform that researchers 

can use to develop their own bespoke features. It is hoped 

that this will help address the paucity of symbolic music 

software produced by the MIR community to date, rela-

tive to the extensive range of software it has produced 

associated with audio and other data, and will encourage 

greater MIR engagement with musicologists and music 

theorists. jSymbolic’s easy-to-use interfaces and exten-

sive documentation are intended to facilitate this. 

Although jSymbolic features can certainly be used in 

classification tasks, as in the experiments described 

above, the direct study of feature values also has im-

portant potential. Such work can combine expert manual 

study with the use of statistical analysis techniques. Re-

search can consist of empirical validation of existing hy-

potheses or of purely exploratory research, all involving 

the study of potentially huge quantities of music. Both 

approaches can help scholars arrive at initially unintuitive 

but potentially crucial musicological insights.  

In terms of experimental conclusions, the results from 

Sections 4 and 5 permit the following observations: 

 The new jSymbolic 2.2 features were quite effective 

in both genre and composer classification, even using 

generic machine learning approaches. They were able 

to distinguish between seven Renaissance composers 

92.4% of the time, and achieved 93.2% genre classi-

fication accuracy when applied to a 5-genre ontology, 

and 77.6% when classifying amongst 10 genres.  

 The new jSymbolic 2.2 features produced better clas-

sification accuracies than the old jSymbolic 1.2 fea-

tures in all tests, and better F-scores in all but one. 

 The new jSymbolic 2.2 features were effective in 

testing expert expectations about differences in the 

musical styles of pairs of Renaissance composers, 

and in revealing additional unanticipated differences. 

7. FUTURE WORK 

We will continue to work with musicologists and music 

theorists by helping them carry out research on large mu-

sical datasets with jSymbolic. We will also assist them in 

implementing specialized features of their own. A partic-

ular focus of this collaborative work will be placed on the 

determination of which features are most effective in dis-

tinguishing different musical classes (composers, genres, 

regions, etc.), and on investigating why. We will also ex-

pand our work on using machine learning to help resolve 

controversial composer attribution. We also intend to 

work on expanding the extent to which jSymbolic can 

extract features from non-Western musics by adding still 

more relevant features.  

We are currently working on integrating jSymbolic2 

into the SIMSSA/MIRAI architecture [10], so that re-

searchers can search the project’s rich music databases 

using content-based queries formulated using feature val-

ues and ranges. A researcher could thus filter results 

based on the amount of chromaticism in a piece, for ex-

ample, or the amount of parallel motion between voices. 

Of even greater interest, queries could potentially be for-

mulated based on hard-to-quantify high-level characteris-

tics, such as degree of tonality, made possible by machine 

learning models trained on jSymbolic features.  

Related to this project, we also plan to apply jSymbol-

ic to symbolic files that have been generated using optical 

music recognition or automatic audio transcription soft-

ware, and to investigate the robustness of the features to 

such error-prone data. In addition to making an enormous 

amount of new music available for symbolic feature ex-

traction, doing this successfully would also greatly facili-

tate multimodal research. The huge Lakh dataset [18] can 

also be studied with similar goals. 

An additional priority will be to add new parsers so 

that features can be extracted from additional file formats. 

We are especially looking at adding features specially de-

signed for music encoded using mensural or other early 

music notations. Finally, we intend to work towards port-

ing jSymbolic2’s new features to other platforms, espe-

cially music21 [4]. 
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