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ABSTRACT

Despite being a core component of Western music theory,
harmonic analysis remains a subjective endeavor, resistant
automation. This subjectivity arises from disagreements
regarding, among other things, the interpretation of con-
trapuntal figures, the set of “legal” harmonies, and how
harmony relates to more abstract features like tonal func-
tion. In this paper, we provide a formal specification of
harmonic analysis. We then present a novel approach to
computational harmonic analysis: rather than computing
harmonic analyses based on one specific set of rules, we
compute all possible analyses which satisfy only basic,
uncontroversial constraints. These myriad interpretations
can later be filtered to extract preferred analyses; for in-
stance, to forbid 7th chords or to prefer analyses with fewer
non-chord tones. We apply this approach to two concrete
musical datasets: existing encodings of 371 chorales by
J.S. Bach and new encodings of 200 chorales by M. Præto-
rius. Through an online API users can filter and download
numerous harmonic interpretations of these 571 chorales.
This dataset will serve as a useful resource in the study
of harmonic/functional progression, voice-leading, and the
relationship between melody and harmony, and as a step-
ping stone towards automated harmonic analysis of more
complex music.

1. INTRODUCTION

Broadly, harmony refers to the simultaneous sounding of
multiple pitches [22]. However, harmonic theory involves
far more than just pitch collections. Rather, harmonic the-
ory describes an abstract syntactic structure in Western
tonal music, hierarchically removed from the literal pitches
of the musical “surface” [22]. Though harmonic theory is a
foundational component of basic music theory, the details
of the theory are vague, and deceptively complex [5]. Har-
mony intertwines low-level sensory distinctions (conso-
nance vs dissonance), short-term musical constructs (coun-
terpoint, voice-leading), and abstract long-range musical
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structures (function, form, tonality, etc.), and thus plays a
central role in musical experience. Given this complexity,
it is no surprise that actual harmonic analysis is highly sub-
jective, and thwarts any attempt to systematize or automate
it. This paper attempts to clarify the dimensions of har-
monic analysis, identifying the import points of disagree-
ment and ambiguity in harmonic theory. We then present
a novel approach to automated harmonic analysis, which
allows us to generate a variety of consistent harmonic an-
notations based on a various assumptions and preferences.

1.1 Theory and Terminology

To avoid confusion with the more general concept of “har-
mony,” we use the term sonority to refer to pitch-class
collections. The most basic sonority is the dyad—pairs
of pitch classes which form consonant or dissonant in-
tervals. 1 Larger sonorities can be seen as combinato-
rial compositions of dyads, as each new pitch class forms
an interval with every other pitch class in the sonority.
Harmonic theory generalizes about various dyad combi-
nations, reducing a huge variety of possible interval com-
binations to a few categories. The central harmonic cat-
egories of Western music are the set of cardinal-three
sonorities in which all intervals are consonant (triads) and
the cardinal-four sonorities which include one dissonant
interval (7th chords). Other sonorities—the preponder-
ance of possibilities—are unclassified and considered non-
syntactic. Some genres (e.g., jazz, music theatre) employ
larger sonorities (9th chords, 13th chords, etc.), which nec-
essarily contain more dissonant intervals, as well as dis-
sonant cardinal-three and cardinal-four sonorities (sus4,
add9, etc.) [5], but even in these styles the vast majority
of sonorities are unclassified.

Traditionally, dissonant harmonic intervals are only
used in highly constrained melodic settings: Dissonant
notes must “decorate” a neighboring consonant note, typ-
ically by moving to/from the consonance by step—a dis-
sonance moving to a consonance by step is said to resolve
to the consonance. Thus, a basic hierarchical distinction
is introduced into music, as “decorative” dissonances are
necessarily subservient to “structural” consonances. Tradi-
tional theory and pedagogy approaches larger musical tex-
tures by applying two-part concepts (parallelism, motion

1 Here we only consider generic intervals, and thus generic disso-
nances. Generically, thirds, fifths, and sixths are consonant, though some
specific versions of these intervals (e.g., diminished fifths, augmented
thirds) are dissonant.
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types, dissonance resolution) to all individual pairs. Un-
fortunately, larger textures introduce complexities which
two-voice theory cannot address: decorative tones may ap-
pear in multiple voices at different times, at the same time,
or even staggered such that one voice’s decorative disso-
nance cooccurs with another’s consonant resolution. As
a result, the consonant harmonies which undergird mu-
sical syntax may never be explicitly sounded as sonori-
ties. The concrete distinction between consonant and dis-
sonant intervals gives way to a nebulous distinction be-
tween chord-tones which instantiate the local harmony and
non-chord tones that decorate them [22]. This distinction,
is the essential task of harmonic analysis. Traditional “ro-
man numeral” harmonic analysis also requires some in-
terpretation of higher-level tonal structures, including the
global key and local modulations. Just as the melodic
surface elaborates the underlying harmonic progressions,
harmonic progressions elaborate more abstract functional
(tonic, subdominant, dominant) progressions and prolon-
gations, which in turn articulate the key or progressions
between keys. This hierarchy, however, is not clear-cut or
discrete: disentangling surface features from increasingly
abstract structural progressions is difficult, and the proce-
dure poorly defined.

1.2 Literature

Computational research into harmonic progression and
function has been extensive [8, 12, 22–24, 27, 30]. Many
researchers have sought to automate harmonic analysis, ei-
ther using rule-based algorithms [9, 11, 21, 28, 29] or ma-
chine learning [13, 18, 19, 26]. Impressive performance
has been achieved, though proper evaluation is some-
what difficult given that the “correct answer” is not clear
cut. Even if interpretive leeway is allowed, algorithms in-
evitably struggle with even mildly idiosyncratic or excep-
tional passages—devising sufficiently complicated rules to
cover all possibilities is impossible, and such passages
are too rare to be learned by machine learning. Due to
these difficulties, many researchers have relied instead on
manual annotation by experts, who can make more nu-
anced decisions and adapt to never-before-seen situations
[1,3,4,8,20]. However, though human analysts may create
more accurate data, manual harmonic annotations—even
by the same analyst—can be extremely inconsistent [14].
Given the subjectivity of harmonic analysis, the consis-
tency of data annotation may actually more important than
a vaguely-defined “accuracy” [6]—inconsistent answers to
similar or identical musical patterns will inevitably hamper
learning, whether human or machine.

To account for inconsistency and disagreement between
theorists, many studies have employed multiple indepen-
dent annotators [3, 4]. This approach is appropriate to the
extent that analytical inconsistency is considered random
noise. However, as we will explain, harmonic indetermi-
nacy is not simply a matter of random error, but rather
reflects fundamental disagreements concerning the nature,
meaning, and purpose of harmonic analysis. Thus, anno-
tation error is not (entirely) stochastic, but rather, is sys-

tematic. What’s more, though multiple independent anno-
tations give us some sense of the scope of disagreement
between analysts, they do little to clarify the root causes of
these disagreements. Our view is that is preferable to: A)
precisely describe the subjective features of harmonic the-
ory; B) study how different theoretical assumptions result
in different analyses; and C) evaluate how well different
assumptions/models explain patterns in music. The goal
of our project is to facilitate these tasks.

1.3 Analytical ambiguity

Harmonic analysis is evidently a useful tool in the descrip-
tion of musical structure and musical experience, yet in
practice, harmonic theory is underspecified with regards to
many musical passages. Indeed, many prominent theories
of music (e.g. Rameau, Riemann, Schenker) differ funda-
mentally in their approach to harmony. It is often possible
to interpret the same passage in a number of ways. Further-
more, the informative distinctions conveyed by different
interpretations is unclear. This ambiguity mainly regards
four questions:

1. Which harmonies are “legal” structural harmonies?
Are sevenths chords true harmonies, or are they al-
ways decorative?

2. How do we interpret sonorities that are subsets,
supersets, or intersections of each other? Tradi-
tional harmonic categories like {V,V7,viio} both
share many pitch classes and have similar musical
function—what, if any, useful information is con-
veyed by treating them as independent categories?

3. How do we interpret contrapuntally decorative notes
which are consonant—i.e, can there be consonant
non-chord tones? This issue is especially difficult
when multiple voices engage in decorative motion
at once, creating “passing chords.”

4. Should harmonic analysis reflect only “surface” fea-
tures (like dissonance resolutions), or should higher-
level structures also play a role? For instance,
should, large-scale parallelism inform analyses?—
i.e., analyzing two parallel passages in a similar way
even if their surface details differ?

Figure 1 illustrates a number of these issues in a con-
crete musical example. In Figure 1, the three notes col-
ored red form dissonances and therefore must be inter-
preted as non-chord tones. Notes colored blue are conso-
nant, but evince melodic contours similar to the dissonant
notes. Throughout this paper, we refer to each new sonor-
ity formed whenever any voice articulates a new onset as
a sonority “slice”—in Figure 1, slices are numbered above
the grand staff.

The consonant passing tones in slices 2 and 8 are espe-
cially illustrative. If the passing tone in slice 2 is consid-
ered a chord tone, slices 1–2 form the harmonies I→ vi6,
both tonic function chords. If the passing tone in slice 8 is
interpreted as a chord tone, the progression ii → vii6

o

results—a transition between two different tonal functions
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(subdominant and dominant). Given these functional dif-
ferences, many analysts would mark slices 1–2 as a single
I chord but slices 7–8 as ii→vii6

o. This is especially
true since transitions from ii→ I (slice 9) are considered
abnormal, while transitions from vii6

o → I are norma-
tive. Several slices illustrate the ambiguity regarding 7th
chords: Passing tones in slices 6, 18, 20, 22 and 24 might
each be interpreted as sevenths, or not. For instance, the
G in slice 11 can be seen as the 7th of a ii6 harmony, or
as a suspension. In Bach’s chorale music, chordal 7ths are
nearly always treated like dissonances, begging the ques-
tion: what is the difference between a “chord-tone 7th” and
a “non-chord-tone 7th”?

2. CURRENT PROJECT

This paper describes a new approach to automated har-
monic analysis, which remains agnostic regarding many
of the specific interpretive complexities discussed so far.
Rather, we base analyses on only a few, basic, uncon-
troversial constraints, allowing us to produce numerous
interpretations of the same sonorities. Using this ap-
proach, we have generated a novel form of harmonic anal-
ysis dataset, including numerous harmonic annotations of
chorales by Michael Prætorius (1571–1621) and Johann
Sebastian Bach (1685–1750). This dataset can serve sev-
eral useful functions:

1. Researchers can generate specific, consistent har-
monic analyses, conforming to whatever analytical
preferences/assumptions they prefer, for all music in
the corpora. These analyses can be used like any
other harmonic annotation data—i.e., to study har-
monic progression and tonality in general.

2. The dataset includes a set of late-modal (Prætorius)
and early-tonal (Bach) music, which are nonetheless
largely similar in texture and style. This makes the
dataset particularly useful for historical research [8].

3. Finally, by comparing analyses generated with dif-
ferent constraints, we can rigorously explore the
ways in which different harmonic theories fit, or
don’t fit, real music.

Chorale music is invaluable for teaching and studying
harmony, as it features consistent and highly constrained
melodic/contrapuntal textures, with few non-chord tones.
Bach’s 371 chorales are mainstays of music theory peda-
gogy and have been the subject of much music informa-
tion retrieval research [2, 7, 8, 16, 22–24, 27, 31]. Præto-
rius’ 200 chorales are music of a somewhat similar texture,
but have received relatively little attention. Several sets of
expert analyses of Bach’s chorales have been published,
though only subsets of the chorales have annotations digi-
tally aligned with symbolic music data. Other researchers
have generated harmonic annotations—or analogous func-
tional analyses—of the chorales computationally, and used
these analyses in research, but have not published their an-
notations, nor describe them in detail.

3. METHODOLOGY

The approach of this project is to calculate all legal har-
monic interpretations of a passage, and to only filter out
specific interpretations at a later stage. Our approach is de-
signed specifically for our dataset, and is thus rather “over
fit” to chorale music, so it will not generalize well to other
music. However, the basic concepts of our approach could
be adapted to other tonal music.

Key to our entire endeavor is establishing “basic” con-
straints on harmonic interpretation. In true music the-
ory form, we formulate these constraints as the following
“rules.” There are two types of rules: harmonic rules and
melodic rules. Our harmonic rules are as follows:

1. Every sonority slice belongs to one and only one har-
mony.

2. Every new harmony must be followed by another
new harmony on the next stronger metric position—
i.e., harmonic rhythm cannot be syncopated. (Some
Prætorius chorales contain exceptions to this rule, as
the entire rhythmic texture is syncopated.)

3. Only triads (major, minor, diminished, or aug-
mented) and 7th chords (dominant, major, minor,
half-diminished, or fully-diminished) are consid-
ered legal harmonies. However, subsets of legal
harmonies may also appear in music. Complete
harmonies are preferred, but cardinal-three subsets
of seventh chords (Root-3rd-7th or Root-5th-7th),
dyadic subsets of triads (i.e., consonant intervals),
and even unisons/octaves are permitted.

Given these definitions of harmony, we can then estab-
lish which notes do, or do not, belong to the local harmony.
To be a non-chord tone, a note must satisfy the following
melodic rules—any note that fails any of these rules must
be a chord tone:

1. The antecedent and consequent note of each non-
chord tone must be consonant (chord tones), except-
ing the special case of Rule 4g (below).

2. Non-chord tones cannot sustain across metric posi-
tions that are stronger than their own metric position.

3. Non-chord tones cannot sustain through changes of
harmony. A note cannot start as a non-chord tone
and then become a chord tone (though the opposite
is possible, in the suspension).

4. Finally, all non-chord tones must match one of these
traditional contrapuntal dissonance models:

(a) Passing tone: approached and departed by step
in the same direction.

(b) Neighbor tone: approached and departed by
steps in opposite directions; the antecedent and
consequent are the same note.

(c) Suspension/Retardation: approached by uni-
son (or sustain); departed by step; stronger
metric position than antecedent.
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Figure 1. Illustration of “decorative” melodic idioms in a contrived example of four-part counterpoint. Slices (sonorities)
are numbered above the staff. Notes colored red indicate dissonances. Notes colored blue indicate consonant notes which
nonetheless articulate decorative melodic idioms, including passing tones (slices 2, 5, 8, 16, 18, 20, 21, 23, 24), neighbor
tones (slices 6, 17, 18, 19), suspensions (slices 11, 23), a retardation (slice 15), and an anticipation (slice 22). Some of
these interpretations are mutually exclusive, as a decorative tone cannot decorate another decorative tone. For instance, if
the C in slice 5 is considered a passing tone, then the B in slice 6 must be a chord tone which resolves the passing tone.

(d) Appoggiatura: approached by leap; departed
by step in opposite direction; stronger metric
position that antecedent.

(e) Escape tone: approached by step; left by skip;
weaker metric position than its antecedent.

(f) Pedal tone: approached by unison (or sustain);
left by unison (or sustain).

(g) Double passing: two non-chord tones of the
same duration, separated by step; approached
and departed by step in the same direction; the
first of the pair must occupy a weaker beat than
its antecedent.

As in all dimensions of harmonic analysis, there is
not universal agreement regarding the rules for non-chord
tones. The rules set out here are an amalgam of the rules
explicitly, or implicitly, described in typical music theory
text books [15, 17], specialized (through some trial an er-
ror) for our chorale datasets.

3.1 Data parsing

Symbolic encodings of the Bach chorales were gathered
from the KernScores repository (kern.ccarh.org),
which is maintained by Stanford’s Center for Com-
puter Assisted Research in the Humanities. The mu-
sic of 370 four-part chorales, and one five-part chorale 2 ,
is encoded in the humdrum **kern representation
(www.humdrum.org) [10]. Symbolic encodings of 200
chorales by Prætorius were recently digitized by members

2 This five-part chorale was excluded from the dataset available on
Kernscores, but was encoded for the purposes of this study

of McGill University SIMSSA project: Scores were ini-
tially scanned and interpreted by optical music recogni-
tion software before being corrected by a human annota-
tor. This data was originally encoded in musicXML for-
mat, but was converted to **kern data for this project,
so as to facilitate alignment with harmonic annotations.
The Prætorius data includes 197 four-voice chorales and
three five-voice chorales. In total, the dataset includes 571
chorales, consisting of 129,568 notes (+ 898 rests), which
form 42,895 sonority slices.
**kern data was parsed using the Humdrum Toolkit

[10], before being loaded into R [25] for additional pars-
ing. The analysis workflow was also conducted in R. To
make the analyses useful as comparisons across the two
composers, (almost) the exact same parsing and analysis
workflow are applied to each.

In addition to pitch and rhythm data, the Bach chorale
data contains some phrasing information, in particular, fer-
matas. A phrase ending in a Bach chorale was identified
whenever all four voices reach a fermata. 3 The Præto-
rius chorale data contains phrasing information, encoded
as rests in all voices, and both datasets contain metric in-
formation. 4

3.2 Workflow

Our process has a two-stage workflow. The first-stage is
to divide the music exhaustively into contiguous groups

3 Several chorales had notational inconsistencies, wherein fermatas
were not encoded on the inner voices. These inconsistencies were fixed
manually.

4 Though metric indications in Prætorius’ era are not exactly concep-
tually equivalent to modern time signatures.
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Figure 2. Illustration of contextual windows in Bach’s Chorale 1, Aus meines Herzens Grunde. Slices between dashed red
lines are analyzed as one window.

of successive slices: “contextual windows.” The second-
stage applies an analysis algorithm to each segment.

3.2.1 Stage 1

Many sonority slices can be analyzed in isolation. How-
ever, many more slices need context to by analyzed. Our
approach is to parse the music into a single set of contigu-
ous (non-overlapping) windows, identified using a sim-
ple, rule-based heuristic. A new contextual window begins
anytime:

1. All voices attack on a strong beat.

2. All voices attack and one or more voices did not at-
tack in the previous slice.

3. In an offbeat slice, more than two voices attack and
one or more voices sustains into/past the next beat.

4. After a phrase boundary.
Figure 2 illustrates the contextual windows derived by this
heuristic in the first seven measures of Bach’s first chorale.
The aim of this heuristic is to err on the side of larger seg-
ments: unnecessarily large windows can be broken down
into separate harmonies at a later stage, but windows that
are too small will not provide enough context to identify
all legal interpretations, and in some cases may result in
windows that are not parsable.

3.2.2 Stage 2

Once analytical windows are identified, we apply the fol-
lowing permutational algorithm to the slices in each win-
dow.

1. Identify all ways in which the window can be di-
vided exhaustively into sub-segments while obeying
harmonic-rhythm constraints (Harmonic Rule 2).

2. For each possible segmentation, identify all pitches
that can legally be non-chord tones (Melodic Rules
3–4)—we call these potential non-chord tones.

3. Compute every combination of potential non-chord
tones, allowing that some interpretations are mutu-
ally exclusive (detailed explanation below).

4. For every legal combination of potential non-chord
tones, remove these non-chord tones and group

the remaining chord tones into every possible sub-
segment.

5. Discard interpretations which contain (any) illegal
harmonies.

6. If any preferred harmonies are present, discard in-
complete harmonies (Harmonic Rule 3).

7. If the same chord is identified in two successive
slices, discard this interpretation (a different sub-
segmentation is sure to have found the equivalent).

8. If a slice is identified as a dyad/unison, and the pre-
ceding or succeeding slice is a superset of that dyad/
unison, the slice is subsumed into the superset.

Figure 3 illustrates the application of this algorithm to
the sixth window in the chorale shown in Figure 2. The
four slices in this window can be legally divided in six
segmentations (Step 1), shown below the staff. Eleven of
the twelve notes in the window are potential non-chord
tones (labeled and enumerated in Figure 3). The algo-
rithm tests various permutations of these potential non-
chord tones (algorithm Steps 3–5) as so: First, assume
potential non-chord #1 is a non-chord tone and all other
notes are chord tones: under this assumption, segmentation
1... forms the illegal sonority {A,B,C,D,E,F#}; seg-
mentation 1.2. forms the illegal sonorities {B,C,D,E}
and {A,B,C,E,F#}; segmentation 1..2 forms the ille-
gal sonority {B,C,D,E} and the legal sonority {A,C,F#};
etc. Repeat this procedure for every other potential non-
chord tone, every pair of non-chord tones, every triplet
of non-chord tones, etc., skipping combinations which are
mutually exclusive—i.e., if #2 is an appoggiatura #4 must
be a chord tone (Rule 1). Testing all non-chord tone per-
mutations across all six segmentations reveals eleven non-
redundant (Steps 6–8) interpretations with legal chords in
all segments (Step 5). 5 Of these eleven, we can “filter
out” interpretations involving 7th chords, leaving the three
triadic analyses shown in Figure 3.

5 Our actual algorithm incorporates a few additional optimizations to
limit the number of permutations which must be tested. The most impor-
tant involves pitch classes: within a given harmonic segment all instances
of a single pitch class must be either non-chord tones or chord tones. For
instance, it would be meaningless to treat #9 as a passing tone but treat
#11 as a chord tone. Similarly, #7 (a C) can never actually be a passing
tone, since the C in the bass is always a chord tone.
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Figure 3. Illustration of the permutational analysis of a
single contextual window (window 6 from Figure 2). Each
note in the window is annotated as a potential non-chord
tone, marked p for passing tone, n for neighbor tone, r for
retardation, or a for appoggiatura—mutually exclusive po-
tentials are annotated with arrows. The single unlabeled C
must be a chord tone, as it does not match any contrapun-
tal dissonance model (Melodic Rules 4). Below the staff,
the six possible rhythmic segmentations of the window are
shown. The four possible purely-triadic interpretations of
the window are show; the notes which are interpreted as
non-chord tones are identified (by number) beside each
analysis.

3.3 Edge cases

Chorale music is valued pedagogically for its simplicity
and consistency. Nonetheless, a handful of chorales con-
tain unusual features which complicate the batch analysis
of the corpora. Notable examples in the Bach chorales in-
clude: an unusual call and response between the soprano
and the rest of the voices in Chorale 43; dissonant notes
which resolve across phrase boundaries (i.e., through a
fermata) in Chorales 127, 202, and 234; and suspensions
which resolve indirectly in Chorales 5 and 199. A number
of Prætorius chorales also contain subsections in which a
subset of voices sing while the others rest, confounding our
windowing heuristic. Solutions to these special cases, and
a handful others, were hard-coded into the workflow.

4. API

The data is hosted at github.com/DDMAL/
Flexible harmonic chorale annotations.
The harmonic permutation data is stored in a rData file.
Users may filter out specific harmonic analyses using an
online GUI, and download them as a zipped collection
of text files encoded in the Humdrum Syntax. Each file
contains the **kern representation of a chorale aligned
with one or more harmonic analyses in a **harm repre-
sentation. Interpretations can be filtered by the following
criteria:

• Type of harmonies.

• Number of harmonies (per beat/per window).

• Types of non-chord tones.

• Number of non-chord tones (per slice/per window).

For example, one could extract analyses which forbid aug-
mented triads, appoggiaturas, and ˇ “) harmonic rhythms.
Users may also download the raw data and associated R
scripts for local use or customization.

5. CONCLUSION

The empirical and computational study of harmony is es-
sential to furthering our understanding of musical structure
and perception. However, this research must remain cog-
nisant of the subtle complexities and controversies of har-
monic theory if it is to be fruitful. We have presented a
novel approach to automated harmonic analysis which is
not limited to one specific set of theoretical assumptions,
allowing for just such subtleties to be explored systemati-
cally. We have also described a new dataset generated via
this method. We hope that this dataset will facilitate re-
search into tonality and harmonic progression, especially
changes in harmonic practice between the early 1600s and
the mid 1700s. However, our grander purpose is to facili-
tate critical, data-driven, interrogation of harmonic theory
in general.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 71



6. REFERENCES

[1] John Ashley Burgoyne, John Wild, and Ichiro Fuji-
naga. An Expert Ground Trught Set for Audio Chord
Recognition and Music Analysis. In A Klapuri and
C. Leider, editors, Proceedings of the 12th Interna-
tional Society for Music Information Retrieval (ISMIR)
Conference, pages 633–638, Miami, FL, 2011.

[2] Trevor de Clercq. A Model for Scale-Degree Rein-
terpretation: Melodic Structure, Modulation, and Ca-
dence Choice in the Chorale Harmonizations of J. S.
Bach. Empirical Musicology Review, 10:188–206, 05
2015.

[3] Trevor de Clercq and David Temperley. A Cor-
pus Analysis of Rock Harmony. Popular Music,
30(01):47–70, January 2011.

[4] Johanna Devaney, Claire Arthur, Nathaniel Condit-
Schultz, and Kirsten Nisula. Theme and Variation En-
codings with Roman Numerals: A New Data Set
for Symbolic Music Analysis. In Meinard Müller and
Frans Wiering, editors, Proceedings of the 16th In-
ternational Society for Music Information Retrieval
(ISMIR) Conference, pages 728–734, Malaga, Spain,
2015.

[5] Christopher Doll. Definitions of ‘Chord’ in the Teach-
ing of Tonal Harmony. Dutch Journal of Music Theory,
18(2):91–106, 2013.

[6] Mark Granroth-Wilding and Mark Steedman. A Robust
Parser-Interpreter for Jazz Chord Sequences. Journal
of New Music Research, 43(4):355–374, 2014.
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