
PART-INVARIANT MODEL FOR MUSIC GENERATION AND
HARMONIZATION

Yujia Yan[, Ethan Lustig\, Joseph VanderStel\, Zhiyao Duan[

Electrical and Computer Engineering[and Eastman School of Music\, University of Rochester
{yujia.yan, j.vanderstel, zhiyao.duan}@rochester.edu

ethan.s.lustig@gmail.com

ABSTRACT

Automatic music generation has been gaining more at-
tention in recent years. Existing approaches, however, are
mostly ad hoc to specific rhythmic structures or instrumen-
tation layouts, and lack music-theoretic rigor in their eval-
uations. In this paper, we present a neural language (mu-
sic) model that tries to model symbolic multi-part music.
Our model is part-invariant, i.e., it can process/generate
any part (voice) of a music score consisting of an arbi-
trary number of parts, using a single trained model. For
better incorporating structural information of pitch spaces,
we use a structured embedding matrix to encode multiple
aspects of a pitch into a vector representation. The gener-
ation is performed by Gibbs Sampling. Meanwhile, our
model directly generates note spellings to make outputs
human-readable. We performed objective (grading) and
subjective (listening) evaluations by recruiting music the-
orists to compare the outputs of our algorithm with those
of music students on the task of bassline harmonization
(a traditional pedagogical task). Our experiment shows
that errors of our algorithm and students are differently
distributed, and the range of ratings for generated pieces
overlaps with students’ to varying extents for our three pro-
vided basslines. This experiment suggests some future re-
search directions.

1. INTRODUCTION

In recent years, there has been a growing interest in auto-
matic music composition. Automatic music composition
is a challenging problem, and it remains an open research
topic regardless of many overblown statements in the press
since the early days of artificial intelligence.

Apart from purely rule-based models that are difficult
to craft, log-linear models, e.g., Hidden Markov Models
(HMM), Conditional Random Fields (CRF), and Proba-
bilistic Context-Free Grammars (PCFG) form a set of tra-
ditional methods for sequence modeling involving discrete

c© Yujia Yan[, Ethan Lustig\, Joseph VanderStel\, Zhiyao
Duan[. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Yujia Yan[, Ethan Lustig\, Joseph
VanderStel\, Zhiyao Duan[. “Part-invariant Model for Music Generation
and Harmonization”, 19th International Society for Music Information
Retrieval Conference, Paris, France, 2018.

variables (e.g., [13] [19] [18] [20]). When used for model-
ing music, they typically model each aspect of music (e.g.,
melody, harmony, durations) separately, or condition one
variable on a small set of other variables (e.g, [1]). This is
because, in music, when multiple aspects join together, the
number of resulting combinations is prohibitively large,
and the dataset is too small for learning every combina-
tion. Moreover, over-sized probability tables make infer-
ence extremely slow. Neural network based approaches
solve this problem by expressing functions with a general
high capacity approximator at the cost of higher computa-
tional requirements (relative to the small factorized model,
but not always), less interpretability and fewer theoretic
guarantees.

In [9] and [14], multi-layered LSTMs are used to model
Bach’s four-part chorales. For generation, the former uses
Gibbs sampling and the later uses greedy search. In [10],
a neural autoregressive distribution estimator is used to
model the same Bach Chorales dataset, and for generation,
authors compare Gibbs sampling, block Gibbs sampling,
and ancestral sampling. In [22] and [6], Generative Ad-
versarial Networks (GAN) are used to model and generate
music pieces in their MIDI piano-roll form, and for genera-
tion, GAN based models sample the result directly without
the need for an iterative sampling procedure.

However, most existing models, during training, adapt
to specific music structures of the corpus being modeled.
As our first attempt to extend the expressiveness of a music
language model, we wonder if there is some invariance that
can be exploited to obtain better generality. It is commonly
believed that Bach wrote his chorale harmonizations by
firstly writing out basslines for given melodies and then
filling in inner voices (Alto, Tenor) [15]. Also, rules for
each part (voice) share much in common, for example, a
single part tends to move in the reverse direction after a
leap. This motivated our idea of treating parts as the basic
entity to model.

In this paper, we propose a part-invariant model for
multi-part music 1 . Our generation framework follows the
Markov Blanket formalism used in DeepBach [9]. Our
model is a part-based model. As a basic consideration of
counterpoint, each part should be in a good shape by it-
self, and when multiple parts are put together, the resulting

1 Supplementary materials and some generation examples can be
found at http://www.ece.rochester.edu/projects/air/
projects/model0.html

204

aggregated sonority should be good. By part-invariance,
we mean that the structure of our model explicitly cap-
tures the relationship among notes within every single part,
and we share this structure with all parts of the score. A
separate structure aggregates the information of how dif-
ferent parts would look like when joined together. As a
result, our model is capable of expressing/processing mu-
sic scores with any number of parts using a single trained
model.

2. MULTI-PART MUSIC

In this work, we focus on music containing multiple mono-
phonic parts (voices). For example, most of Bach chorales
were written in the SATB format (Soprano, Alto, Tenor,
and Bass), with each part containing a monophonic stream
of notes. It is a traditional pedagogical practice to teach
fundamental concepts of music theory by having students
analyze and compose (i.e. “part write”) this kind of music.
When analyzing or composing music, we often separate
a musical score into streams of notes [2], consciously or
unconsciously. This part-separated form of music scores
is easier to analyze and manipulate algorithmically, and
many symbolic music analysis tasks use this separation
as one of their preprocessing steps [7]. There are some
existing approaches to perform part (voice) segmentation;
see [7, 8] for more details. Therefore, our proposed tech-
nique focuses on encoding a part-segmented representation
assuming the segmentation is known.

2.1 Representation

In traditional western music notation, durations of notes
are derived by uniformly dividing a duration of a unit
length recursively. Notes start and end on a subdivided
position. It is thus reasonable to represent a music score
as events on a grid, with each grid point representing a
time frame. This process is commonly known as quan-
tization. This practice can be seen in many works, e.g.,
[1, 9, 14, 22]. In this work, we keep the quantization step
size fixed throughout the piece.

We encode two aspects of a music score: pitch and met-
rical structure. We make the following requirements for
this representation:

1. This representation is able to encode a minimal set
of musical notational elements, from which the re-
constructed music score is human-readable.

2. Values at the same beat position under different
quantization step sizes are the same.

Existing works make use of MIDI pitch numbers for en-
coding pitch. However, MIDI pitch numbers discard one
element that is important for context determination: note
spelling. In the proposed representation, pitch is repre-
sented by a tuple (diatonic note number, accidental),
where diatonic note number is the index of a note name
with accidental removed (imagine the indices for white
keys on a piano keyboard), and accidental has a range of
[−2, 2], that is, up to 2 flats and 2 sharps. For representing

a whole note event, similar to [9,17], we use a special con-
tinuation symbol, which is −1 in the diatonic note number
field. For positions of rest notes, we artificially set their
diatonic note number to 0. Accidentals are undefined in
these two cases, therefore zeros can be filled in.

We encode the metrical structure into three simultane-
ous sequences sharing the same time resolution as the pitch
frames: 1) Bar Line is a binary sequence encoding mea-
sure boundaries. A value of 1 is assigned to the frame at
the first beat of a measure, and 0 is assigned elsewhere. 2)
Beat Level encodes a frame’s beat (sub-)division level in
the metric hierarchy within a measure. Frames at the high-
est beat division level are assigned a value of 0; frames
at the next level are assigned −1, etc. 3) Accent Level
encodes the relative strength of beat positions of frames
within a measure, with 0 representing the highest strength
and −1 representing the second highest strength, etc. For
example, for a classical 4/4 time signature, the frame at the
first beat of a measure is assigned 0, the frame at the third
beat is assigned −1, etc.

The first two encoding sequences work together to make
it possible to reconstruct bar lines and the time signa-
ture. The third sequence further encodes metrical ac-
cents that are indicative of different music styles, and reg-
ular/irregular metrical structures.

Bar Line 1 0 0 0 0 0 0 0
Beat Level 0 -1 0 -1 0 -1 0 -1
Accent Level 0 -3 -2 -3 -1 -3 -2 -3

3. THE PART-INVARIANT MODEL

3.1 Model Architecture

Following the general practice of language models, our
model predicts one symbol at a position given its (musi-
cal) context, that is,

P (xt,k|contextt,k),

where t is the time frame index, k is the part index, and xt,k
is the pitch representation at position (t, k). We further as-
sume contextt,k to be able to separate xt,k from influences
of all other variables (Markov Blanket assumption). This
Markov Blanket formalism is also used in [9].

For obtaining a vector summarizing the context for part
k and frame t, after masking the symbol at the posi-
tion (t, k) as a special UNK symbol, we first use a part-
wise summarizer, which is a single-layered bidirectional
RNN 2 , to produce a part-wise context vector for each part.
Then all part-wise context vectors are aggregated by one of
reduction operations, e.g., max, min, sum, along the axis
of part indexes, to produce an aggregated context vector.
We also summarize the metrical structure (bar line, beat
level, and accent level) with another single-layered bidirec-
tional RNN to produce a metrical context vector. Finally,
for time frame t, the part-wise context vector for part k, the

2 Bidirectional here means that the output is a concatenation of outputs
for the same time step from two RNNs with opposite directions.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 205

aggregated context vector, and the metrical context vec-
tor are concatenated and fed into a feed-forward network
with a softmax output layer to obtain the final prediction
P (xt,k|contextt,k).

Our model is illustrated in Figure 1. Inputs to the part-
wise context summarizer are vector embeddings described
in Section 3.1.1, Inputs to the metrical context summarizer
are raw metrical sequences, and the RNN structure used in
our experiment is described in Section 3.1.2.

C3
E4

G3
D4

C3
C4

C3
E4

G3
D4

C3
C4

(a) Sequence of Sets vs. Bag of Parts. Our model is
built upon the idea of bag of parts.

 context vector for
pos (t, k)

metrical context
vector for time t

Note Predictor

P(|)xt,k contextt,k

aggregated Context
Vector for time t

(b) Predicting a note given its context.

Frame t

Part k+1··· ···
Part k ··· ···
Part k-1··· ···

Part-wise Context Summarizer

Context Vector
for Part k, Frame t

(c) Part-wise context vector: each part is summarized
by a bidirectional RNN.

projected context vector
for Part 1

Reduce
along

this axis

Projection
This can be max, sum,

min,mean, etc.

projected context vector
for Part 2

projected context vector
for Part 3

aggregated context vector

(d) Aggregated context vector: taking a reduction op-
eration along the axis of projected part-wise context
vectors and then projecting to a desired dimension.

Figure 1: Model Architecture.

3.1.1 Structured Pitch Vector Embedding

An embedding layer, which is usually the first layer of neu-
ral networks for modeling discrete symbols, learns a vector
representation for each symbol. For embedding pitches, if
each pitch is treated as a separate symbol, some general
relationships that are already known (e.g., octave equiva-
lence, intervals) will be lost. Therefore, we propose to use
a factorized vector embedding representation (i.e., multi-
ple terms in Eq. (1)) for each pitch for better generality.

For readers not familiar with embedding layers, one can
treat Vk’s below as lookup tables, each of which creates

one entry (vector) for every possible value it takes.
The final vector embedding V (p) is the sum of a series

of embedding vectors, with each encoding a different “as-
pect” of a pitch.

V (p) = V1(diatonicPitchClass(d)) + V2(d)

+V3(p) + V4(MIDI(p))

+V5(chromaticPitchClass(MIDI(p))),

(1)

where p = (d, acc) is the pitch tuple defined in Sec-
tion 2, with d being the diatonic note number and
acc being the accidental; MIDI(·) is the MIDI pitch
number; diatonicPitchClass(·) and chromaticPitchClass(·)
wrap numbers according to octave equivalence; V is the
final vector embedding; V1, V2, V3, V4, V5 are vector em-
beddings for different aspects. These vector embeddings
are jointly learned during training.

3.1.2 Stack Augmented Multiplicative Gated Recurrent
Unit

The temporal dependency can be long for a representation
using fine quantized time frames. In this work, instead of
using standard LSTMs, we use a stack augmented mul-
tiplicative Gated Recurrent Unit as the RNN block. The
GRU part implements the short-term memory. We choose
the stack mechanism [11] for the long-term memory be-
cause of its resemblance to the pushdown automata, which
has more expressive power than a finite state machine and
is able to recognize context-free languages, which are of-
ten used to model some elements in music.

We make the following convention for our notation: un-
bolded lowercase letters, e.g, a, denote scalars; bolded
lowercase letters, e.g, x, h, denote vectors; bolded upper-
case letters, e.g, W, S, denote matrices.

The original GRU, as introduced in [4], transforms the
input sequence of 〈xt〉 into a sequence of 〈ht〉, where t is
the time step index:

rt = σ(Wr[xt;ht−1] + br),

ut = σ(Wu[xt;ht−1] + bu),

ct = tanh(Wc[xt; rt � ht−1] + bc),

ht = ut � ht−1 + (1− ut)� ct,

(2)

where rt is the reset gate, ut is the update gate, ct is the
update candidate, σ(x) = 1

1+e−x is the Sigmoid func-
tion. W’s and b’s are all trainable parameters, repre-
senting weights and biases respectively, � here represents
element-wise multiplication, [xt;ht−1] concatenates vec-
tors into a longer column vector.

Multiplicative integration [21] adds quadratic terms into
RNN update equations in order to improve the expressive
power. In our implementation, we replace the equation for
the update candidate with

ct,x = Wcxxt,

ct,r1 = Wcr1(rt � ht−1) + bcr1,

ct,r2 = Wcr2(rt � ht−1) + bcr2,

ct = tanh(ct,x � (ct,r1 + 1) + ct,r2).

(3)

206 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018

A stack-based external memory for RNN is introduced
in [11], which is reported to be able to learn some se-
quences that are not learnable by a traditional RNN, e.g,
LSTM.

We denote the stack as a matrix St, with dimensions of
N ×M , where N is the length of one entry in the stack,
and M is the capacity of the stack. In our implementation,
a stack augmented memory performs the following proce-
dure at each time step:

1. Fetch vt from the stack by positional attention,
which is a linear combination of columns in St with
weights kt:

kt = softmax(Wread[xt;ht−1] + bread),

vt = Stkt;
(4)

where softmax(x) = exp(x)
1T exp(x)

;

2. Augment the input with the fetched value:

x̃t = [xt;vt], (5)

and then run one step RNN with input x̃t, which
produces ht;

3. Generate the input to the stack:

zt = tanh(Wz[x̃t;ht] + bz); (6)

4. Make decisions on how to update the stack:at,no-op

at,push

at,pop

 = softmax(Wa[x̃t;ht] + ba), (7)

where a’s are probabilities that sum up to 1 repre-
senting the probability of stack operations (no oper-
ation, push, pop);

5. Update the stack by expectation of operations:

St,pushed = [zt,firstk(St−1)],

St,popped = [lastk(St−1),0],

St = at,no-opSt−1

+ at,pushSt,pushed

+ at,popSt,popped,

(8)

where firstk(·) extracts the first k columns, and
lastk(·) extracts the last k columns. Here k =M−1.
Operator [,] concatenates vectors/matrices horizon-
tally.

3.1.3 Context Aggregation: Obtaining Part-Invariance

As mentioned above, the aggregated context vector is ob-
tained by reduction operations on projected part-wise con-
text vectors, and is then projected to the desired dimension.

Caggregated
t = Wproj2(

K⊕
k=1

Wproj1C
part
t,k), (9)

where Caggregated
t and Cpart

t,k are aggregated context vector

and partwise context vector respectively,
⊕K

k=1 denotes a

reduction operator over k from 1 to K, where K is the
number of parts, Wproj1 and Wproj2 are projection ma-
trices for transforming the context vector into a higher di-
mension and back in order to improve the expressiveness
of this reduction operation. In our experiment, we use max
reduction. The proof of the universal approximation prop-
erty for approximating a continuous set function when max
reduction is used can be found in [3].

The reduction operation applied here produces a contin-
uous bag of parts (bag means (multi-)set). This terminol-
ogy draws similarity to continuous bag of words (CBOW,
[16]), which averages all vector embeddings for all words
(mean reduction) within a window to obtain the vector
representation for this context. For comparison, existing
works conceptually make use of sequence-of-set paradigm
for context modeling (see Figure 1a), therefore the con-
text model is confined to learning sequential relationships
between sets. Our conceptual paradigm is on a different
direction. We built a model for processing monophonic
parts and a model for putting them into a bag. One impor-
tant feature for doing this is that it allows learning shared
properties of parts. Also, the ordering of parts, which is
redundant for a context encoder, is discarded and only the
content information of all parts is aggregated. As a result,
it reduces the model complexity required.

3.2 Sampling and Generation

After training the Markov blanket model for approximat-
ing the probability of a note conditioned on its context,
P (xt,k|contextt,k), the process of generation is performed
by Gibbs sampling with an annealing schedule. This pro-
cedure is almost the same as the one used in [9].

Firstly, we initialize notes xt,k of all positions in the
empty parts randomly. Then we iterate:

1. Randomly or deterministically select the next posi-
tion (t, k) that is not fixed 3 to sample;

2. Sample new xt,k, according to

P̃ (· |contextt,k) ∝ (P (· |contextt,k))1/T , (10)

i.e, the annealed distribution with temperature T >
0;

For vanilla Gibbs sampling, T ≡ 1. However, as
pointed out in [9], conditional distributions outputted are
likely to be incompatible and there is no guarantee that the
Gibbs sampler will converge to the desired joint distribu-
tion.

In Gibbs sampling with an annealing schedule, the tem-
perature starts from a high value and gradually decreases to
a low value. By incorporating this annealing scheme, the
algorithm can escape from initial bad values much easier at
the beginning, and the average likelihood for the selected
new samples increases as the temperature decreases. For
illustration, in the limiting case that T → 0, the algorithm

3 Fixed positions are used as conditions. For example, if the task of
melody harmonization, the melody part is fixed.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 207

greedily selects new samples that maximizes the local like-
lihood.

Since in our model parts are orderless, the generated re-
sult does not ensure all parts in their usual notated staffs.
Also, the imperfection of Gibbs sampler often makes the
configuration get stuck in a region where voice crossing
occurs even if parts in the training set rarely cross. In
the experiment, we enforce one constraint during sampling
as a workaround: in each time frame, the pitch of each
part cannot go above/below the part that is immediately
above/below it, i.e., no voice crossing is allowed. This
constraint is achieved by limiting the range of candidates
to sample. How to design a better sampling procedure is
left for future investigation.

4. EXPERIMENT

4.1 Training

4.1.1 Dataset

We trained our model on the Bach Chorale dataset in-
cluded in Music21 [5]. We chose this dataset to perform
our experiment for the following reasons: firstly, it is pub-
licly available; secondly, it matches the objective evalua-
tion methods we designed 4 ; thirdly, there is no need to
perform voice separation in this dataset. Different parts
are separately encoded in the file format.

We performed data augmentation by transposition with
a range such that the transposed piece is within the lowest
pitch minus 5 semitones to a highest pitch plus 5 semitones
for the whole dataset. Enharmonic spellings are resolved
by selecting the one that creates the minimum number of
accidentals for the entire transposed piece.

4.1.2 Model Specification

In our experiment, we use a quantization step size of a
sixteenth note. Embedding layers have a dimension of
200. We use single-layered RNNs as the partwise con-
text summarizer and metrical sequence summarizer. All
RNNs have a hidden state size of 200, stack vector length
200, stack size 24. The intermediate dimension for the
part aggregating layer is 1000. The final predictor is a
feed-forward neural network with 3 layers, each of which
contains 400 hidden units. The final softmax layer has a
dimension of 400, each corresponding to a specific pitch
tuple (diatonic note number, accidental). We use cross en-
tropy as the loss function. Curriculum learning is used in
our training: we started from a small half-window width of
8 and gradually doubled the half-window width to a max-
imum of 128. During training, pitches within the context
window are randomly set to a rest with probability 0.1. All
layers except for the RNN layers use a dropout rate of 0.1.

In our evaluation, we use an half-window width of 64
for generation. We use a simple linear cooling schedule
to decrease the temperature from an initial value of 1.2 to

4 The objective evaluation follows rules used in textbook part writing,
which are greatly influenced by Bach Chorales, however, these rules are
not strictly followed by Bach himself.

0.25. The total number of iterations is selected such that
every position is sampled 40 times.

Music scores are reconstructed by directly using acci-
dentals, diatonic note numbers and the original encoded
metrical sequences. Key signatures and clefs are automat-
ically determined by Music21’s [5] built-in functions.

4.2 Evaluation

 44
(a) bassline1 34
(b) bassline2 44
(c) bassline3

Figure 2: Basslines used in our evaluation.

To perform evaluation, we compared our algorithm’s
harmonizations of basslines with harmonizations of those
same basslines completed by music students. We used
three basslines which vary in difficulty, ranging from di-
atonic (bassline 1) to moderately chromatic (bassline 2) to
highly chromatic (bassline 3). 5 For each bassline, our al-
gorithm generated 30 outputs, for a total of 30*3 outputs.
As a side note, 4 bars is the usual length for a harmo-
nization exercise. This length is different from lengths of
pieces in the training set.

We recruited 33 second-semester sophomore music
majors, offering them extra credit for harmonizing each
bassline. We gave each student a .xml file containing
the three basslines, with three blank upper staves . We
instructed students to harmonize each of the basslines in
four-part, SATB chorale style, following the usual rules of
voice-leading and harmony. We used valid responses from
27 students (those not empty and returned timely) in the
following evaluation tasks.

We recruited two teams for evaluation: graders and lis-
teners. The graders were three music theory PhD students.
They were given the 57 valid outputs (57 ∗ 3 in total) in
.pdf format; we created a grading rubric 6 . A deduction
less than 0 was computed by each grader for each output.
The lower the value, the greater the number of errors. One
graded example can be found in Figure 3.

Figure 3: Example annotation from one of our graders.

5 Basslines 1 and 2 were taken from Exercises 10.3C and 21.2, respec-
tively, from [12]. In Bassline 2, the B was originally a Bb in [12], but we
changed it to increase chromaticism. Bassline 3 was created by us, and
intended to represent highly modulatory chromatic harmony.

6 The rubric is typical of traditional music theory textbooks and
classes. For the detailed rubric, see the supplementary website.

208 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018

While the grading method was fairly objective (corre-
lations between error values from the three graders were
.85, .88, and .92), we also wanted subjective ratings. In ad-
dition, we recruited a listening team of another three mu-
sic theory PhD students. We gave them the same 57 * 3
outputs in .mp3 format, synthesized with a software piano
synthesizer and tempo 93, and these instructions:

For each output, answer the following four questions:
1. As you listen, how much are you enjoying this solu-

tion (on a scale of 1 to 4, where 1 = not enjoying at
all and 4 = greatly enjoying)?

2. As you listen, how confident are you that this solu-
tion is by a computer vs. a sophomore (on a scale
of 1 to 4, where 1 = probably a computer and 4 =
probably a sophomore)?

3. As you listen, to what extent does this solution
conform to textbook/common-practice voice-leading
and harmony (on a scale of 1 to 4, where 1 = not very
idiomatic and 4 = quite idiomatic)?

4. Please share any other comments or thoughts (for
example, why does it sound like it’s a computer vs. a
sophomore?)

To summarize, for each output we had 3 gradings (1
value * 3 graders) and 9 subjective ratings (3 ratings*3 lis-
teners) plus additional open-ended comments.

To minimize bias, graders only received .pdf outputs;
listeners only received .mp3 outputs. The outputs were
presented to the graders and listeners in random order.
Both teams were blind to the output source (computer or
student), and were allowed to take as much time as they
needed to make their assessments.

Our experiment result is summarized in Figure 4. Our
experiment shows that gradings and listening ratings for
our algorithm and students overlap to different extents (our
algorithm performs best on the second bassline). For the
listening test, our algorithm consistently performs a bit
worse than average second-year second-semester music
majors.

The comments from the listener who contributed most
of the open-ended comments (question 4) suggest that the
presence of tonality was one of the main factors in their
Turing judgements. This listener attributed harmoniza-
tions that feature small stylistic errors (e.g., oddly repeated
notes, parallel voice leading, etc.) to both human and com-
puter, but those harmonizations that sounded resolutely
tonal were only attributed to humans. Another listener
seemed to ground their judgments on a different feature:
“A lot of the ones I think are computer-generated do ca-
dences super well.” Indeed, for the most part the computer
did generate well-formed cadences.

By examining the detailed responses from our graders,
we have the following rudimentary observations:

1. Errors of our algorithm and students are differently
distributed.

2. Parallel octave/fifth (Error 3) is one frequent error
produced by our algorithm, more often than stu-
dents. This type of error is also observed in gen-
eration examples shown in [9].

bassline1 bassline2 bassline3
25

20

15

10

5

0

de
du

ct
io

ns
/p

ts

Computer
Students

(a) Results for the objective grading test.

En
joy

men
t
Tu

rin
g

Te
xtb

oo
k

En
joy

men
t
Tu

rin
g

Te
xtb

oo
k

En
joy

men
t
Tu

rin
g

Te
xtb

oo
k

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sc
or

e

Computer
Students

bassline1 bassline2 bassline3

(b) Results for the subjective listening test.

Figure 4: Objective and subjective comparisons between
our algorithm’s and music students’ harmonization on the
three basslines.

3. Our algorithm produces more non-stylistic progres-
sions (Error 6 and Error 7). In our algorithm, it is
observed that, smooth/melodic voice leading may
sometimes suppress the requirement of the vertical
sonority.

4. Students are much more likely to exceed the octave
range limit between nearby upper voices (Error 9)

From our experiment result, it is revealed that the pro-
posed algorithm cannot learn what is bad/incorrect just by
watching correct examples. Therefore, there is a need to
train with negative examples. Our experiment provides
useful data for future development.

5. CONCLUSION

In this work, we proposed a part-invariant model for music
generation and harmonization that operates on multi-part
music scores, which are scores containing multiple mono-
phonic parts. We trained our model on Bach Chorales
dataset. We performed objective and subjective evalua-
tions by comparing the outputs of our algorithm against the
textbook-style part writings of undergraduate music ma-
jors. Our experiment result provides insights and data that
will be useful for future development.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 209

6. REFERENCES

[1] Moray Allan and Christopher Williams. Harmonising
chorales by probabilistic inference. In Advances in
neural information processing systems, pages 25–32,
2005.

[2] Albert S. Bregman. Auditory scene analysis. MIT
Press, 1996.

[3] R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J.
Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 77–85, 2017.

[4] Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using rnn encoder–decoder for statistical
machine translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, 2014.

[5] Michael Scott Cuthbert and Christopher Ariza. mu-
sic21: A toolkit for computer-aided musicology and
symbolic music data.

[6] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-
Hsuan Yang. Musegan: Multi-track sequential gener-
ative adversarial networks for symbolic music genera-
tion and accompaniment. In AAAI-18 AAAI Conference
on Artificial Intelligence, 2018.

[7] Patrick Gray and Razvan C Bunescu. A neural greedy
model for voice separation in symbolic music. In Inter-
national Society for Music Information Retrieval Con-
ference (ISMIR 2016), pages 782–788, 2016.

[8] Nicolas Guiomard-Kagan, Mathieu Giraud, Richard
Groult, and Florence Levé. Comparing voice and
stream segmentation algorithms. In International So-
ciety for Music Information Retrieval Conference (IS-
MIR 2015), pages 493–499, 2015.

[9] Gaëtan Hadjeres, François Pachet, and Frank Nielsen.
Deepbach: a steerable model for bach chorales gener-
ation. In International Conference on Machine Learn-
ing, pages 1362–1371, 2017.

[10] Cheng-Zhi Anna Huang, Tim Cooijmans, Adam
Roberts, Aaron C. Courville, and Douglas Eck. Coun-
terpoint by convolution. In ISMIR, pages 211–218,
2017.

[11] Armand Joulin and Tomas Mikolov. Inferring algorith-
mic patterns with stack-augmented recurrent nets. In
Advances in neural information processing systems,
pages 190–198, 2015.

[12] Steven G. Laitz. Writing and analysis workbook to ac-
company The complete musician: an integrated ap-
proach to tonal theory, analysis, and listening, 3rd edi-
tion. Oxford University Press, 2012.

[13] Victor Lavrenko and Jeremy Pickens. Polyphonic mu-
sic modeling with random fields. In Proceedings of the
eleventh ACM international conference on Multimedia,
pages 120–129. ACM, 2003.

[14] Feynman T. Liang, Mark Gotham, Matthew Johnson,
and Jamie Shotton. Automatic stylistic composition of
bach chorales with deep lstm. In ISMIR, pages 449–
456, 2017.

[15] Robert L Marshall. How JS Bach composed four-
part chorales. The Musical Quarterly, 56(2):198–220,
1970.

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013.

[17] Franois Pachet, Alexandre Papadopoulos, and Pierre
Roy. Sampling variations of sequences for structured
music generation. In ISMIR, pages 167–173, 2017.

[18] Martin Rohrmeier. A generative grammar approach to
diatonic harmonic structure. In Proceedings of the 4th
sound and music computing conference, pages 97–100,
2007.

[19] Ian Simon, Dan Morris, and Sumit Basu. Mysong: au-
tomatic accompaniment generation for vocal melodies.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 725–734. ACM,
2008.

[20] Andries Van Der Merwe and Walter Schulze. Music
generation with markov models. IEEE MultiMedia,
18(3):78–85, 2011.

[21] Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua
Bengio, and Ruslan R Salakhutdinov. On multiplica-
tive integration with recurrent neural networks. In
Advances in Neural Information Processing Systems,
pages 2856–2864, 2016.

[22] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang.
Midinet: A convolutional generative adversarial net-
work for symbolic-domain music generation. In Pro-
ceedings of the 18th International Society for Music In-
formation Retrieval Conference (ISMIR2017), Suzhou,
China, 2017.

210 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018

