
SUMMARIZING AND COMPARING MUSIC DATA AND ITS
APPLICATION ON COVER SONG IDENTIFICATION

Diego Furtado Silva
Departamento de Computação

Universidade Federal de São Carlos
São Carlos, Brazil
diegofs@ufscar.br

Felipe Vieira Falcão, Nazareno Andrade
Departamento de Sistemas e Computação
Universidade Federal de Campina Grande

Campina Grande, Brazil
{felipev,nazareno}@lsd.ufcg.edu.br

ABSTRACT

While there is a multitude of music information retrieval
algorithms that have distance functions as their core pro-
cedure, comparing the similarity between recordings is a
costly procedure. At the same, the recent growth of digi-
tal music repositories makes necessary the development of
novel time- and memory-efficient algorithms to deal with
music data. One particularly interesting idea on the lit-
erature is transforming the music data into reduced rep-
resentations, improving the memory usage and reducing
the time necessary to assess the similarity. However, these
techniques usually add other issues, such as an expensive
preprocessing or a reduced retrieval performance. In this
paper, we propose a novel method to summarize a record-
ing in small snippets based on its self-similarity informa-
tion. Besides, we present a simple way to compare other
recordings to these summaries. We demonstrate, in the sce-
nario of cover song identification, that our method is more
than one order of magnitude faster than state-of-the-art ad-
versaries, at the same time that the retrieval performance
is not affected significantly. Additionally, our method is
incremental, which allows the easy and fast update of the
database when a new song needs to be inserted into the
retrieval system.

1. INTRODUCTION

With the arising of digital music platforms and the con-
sequent growth of music data repositories, we have wit-
nessed an increasing interest in fast methods for mining
this kind of data. Organizing, searching, and finding pat-
terns in large repositories require algorithms that are ef-
ficient in memory and time while providing an accurate
performance.

Several algorithms proposed for different music
mining and information retrieval rely on comparing
(dis)similarities among the recordings of interest. One is-

c© Diego Furtado Silva, Felipe Vieira Falcão, Nazareno An-
drade. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Diego Furtado Silva, Felipe Vieira
Falcão, Nazareno Andrade. “Summarizing and Comparing Music Data
and Its Application on Cover Song Identification”, 19th International So-
ciety for Music Information Retrieval Conference, Paris, France, 2018.

sue regarding this approach is the scalability of these meth-
ods, since comparing distances is usually a costly proce-
dure.

The cover song identification (CSI) is one task that usu-
ally is assessed by similarity-based methods. Most work
on advancing the knowledge in CSI is based on creating
or adapting new similarity measures and algorithms for
comparing the recordings [8, 11, 19] or fusing features or
distances to improve the retrieval performance [6, 17, 25].
While some efforts point to the direction of improving
CSI runtime [4, 10, 18, 24], the majority of papers on
CSI rely on quadratic algorithms to compare each pair of
songs [3,21,26–28], which may difficult its application on
large databases.

One particular idea on speeding up the CSI was pre-
sented by Silva, Souza and Batista [24]. The authors pro-
posed a training phase to find what they called “triplets”,
which are three short excerpts of each original recording
that summarize them, i.e., that represent the songs with a
reduced amount of data. When comparing a new query
against these summarized data, the runtime for the distance
calculations drastically reduces, since it is proportional to
the length of the feature vectors under comparison.

While summarizing tracks can significantly improve
retrieval runtime, the triplets technique has some con-
trivances that make its use difficult. Most importantly, its
training phase is costly in time and memory. Also, it con-
siders that more than one original or authorized version
of each song is available: the method depends on measur-
ing the distance of each candidate excerpt to several other
segments of the same “class label.” Finally, once a new
recording is added to the dataset, the training phase must
be recomputed, since the method to choose the summaries
also relies on comparing songs from different labels to an-
alyze the class separability.

In this work, we also leverage the idea of summariz-
ing recordings for fast retrieval. However, we proposed a
new suite of methods for summarizing and comparing mu-
sic data that makes these two usually costly steps simpler
and faster. The methods put forward are based on a fast
subsequence similarity join algorithm that achieves good
retrieval performances and can easily and quickly incre-
ment the reference dataset when a new original recording
is presented.

732



The suit of methods proposed in this work has the fol-
lowing contributions:

• considerably higher speed to summarize recordings
compared to the state-of-the-art;

• a reduction of an order of magnitude in the runtime
of the comparison and retrieval phase compared to
recent proposals of scalable algorithms;

• no significant loss of retrieval performance is in-
curred in process of speeding up summarization; and

• because our summarization method solely relies on
the recording being summarized, the method is nat-
urally parallelizable and incremental.

Figure 1 illustrates the pipeline of our method.

Original
recordings

Chroma-based
features

Self-similarity
join

...

R
ef

er
en

ce
 d

at
a

Q
ue

ry

Summaries

Comparing

____________
Final

ranking

Figure 1: The pipeline of our method consists of summa-
rizing the reference dataset using similarity joins and, for
each query, comparing it to the summaries to achieve a
ranking by similarity.

This paper is organized as follow: Section 2 introduces
a background on the task of cover song recognition and a
few related work. Section 3 presents our summarizing and
comparing techniques, which composes the proposed suite
for fast similarity recover. Section 4 presents the experi-
mental evaluation of our method. Section 5 discuss some
ideas on how further improve our proposal. Finally, Sec-
tion 6 concludes this work.

2. BACKGROUND AND RELATED WORK

The main focus of this paper is the cover song identifica-
tion (CSI) task. A cover song is a generic name to refer for
any recording that is a new version of an original record-
ing. While it may represent an attempt to make a faithfully
reproduction of the original work, covers usually widely
differs on many characteristics, such as key, timbre, struc-
ture and tempo, which makes CSI a difficult task.

To deal with this variation, several methods provide in-
variance to these issues to CSI algorithms. One example
is the Optimal Transposition Index (OTI) [20], which pro-
vides key invariance. This algorithm starts by calculating
and storing a global pitch profile of the recordings under
comparison. Using these profiles, it estimates the differ-
ence in key of the songs and transpose one of their feature
vectors so that the tracks have the same (estimated) key.

Tempo differences also motivate the need for invari-
ance. Several similarity methods for CSI proposed in the
literature are based on a dynamic programming algorithm
to dynamically align the compared recordings [6,8,21,25].
This kind of algorithm provides invariance to tempo at the
cost of relying on a costly alignment algorithm.

For this reason, techniques which are chiefly concerned
with the runtime of CSI systems usually apply lock-step
measures such as the Euclidean distance. In these cases,
providing tempo invariance in the feature level is a com-
mon approach. One option for that is smoothing the feature
vectors, an approach that is adopted by some chroma-based
features definitions, such as the Chroma Energy Normal-
ized Statistics (CENS) [16].

Many methods for CSI in the literature, if not all, use
a pipeline that includes techniques to provide invariances
and a distance measure calculation. One example is the
already mentioned Triplets [24]. Specifically, this method
uses CENS and OTI in its process.

Triplets summarizes the CENS from each reference
(original) recording in three short excerpts that are maxi-
mally close to excerpts (subsequences) from the same song
and far from the excerpts from other pieces. Once a query
is presented to the CSI system, it rotates the query accord-
ing OTI and compares it to the summaries. On the one
hand, the summarization significantly improves the run-
time to assess a query. On the other hand, the step of find-
ing the triplets is prohibitive thanks to the high number of
distance calculations it requires.

Another work from the same research group proposes
to identify covers assessing subsequence similarity joins
by using the similarity matrix profile, or SiMPle [23]. The
SiMPle is a representation of the subsequence similarity
join, which is the task of finding the nearest neighbor of
each subsequence from a frame-level feature vector among
all the subsequences of another vector. Particularly, this
operation is called AB-join. The operation of calculating
of the best match between a subsequence of a song to itself
(disregarding trivial matches) is referred to as self-join.

The join operation returns two pieces of information:
the SiMPle and the SiMPle index. While the SiMPle stores
the distance of each subsequence to its nearest neigh-
bor, the SiMPle index indicate which subsequence is such
neighbor.

The main intuition behind SiMPle in the CSI domain is
that comparing a query to its corresponding original ver-
sion tends to return small distances. Conversely, compar-
ing the query to a recording of another song tends to pro-
duce high subsequence distances. As such, the authors de-
fined the distance between a query B and a candidate orig-
inal recording A as:

dist(A,B) = median(SiMPle(B,A)) (1)

While in the SiMPle paper the SiMPle-based CSI is
performed over the AB-join operation, the authors demon-
strate other applications relying on the self-join procedure.
For instance, it is possible to use the SiMPle and the SiM-
Ple index to find music thumbnails (most repeated subse-

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 733



quence, given by the neighbors stored in the index) and
patterns that are faithfully reproduced in different times of
the song or are the most different excerpts in the recording
(small and high values in the SiMPle, respectively).

However, computing the distance between a high num-
ber of subsequence pairs is a costly operation. To speed
up the SiMPle calculation, the authors used MASS, a
Fast Fourier Transform-based algorithm to perform a fast
subsequence similarity search under the Euclidean dis-
tance [14]. The Euclidean distance (ED) between two vec-
tors of n elements is calculated as:

ED(A,B) =

√√√√ n∑
i=1

(ai)2 +

n∑
i=1

(bi)2 − 2(A ·B) (2)

When using the ED to find the best match between a
subsequence and a long feature vector, we may slide the
short sequence along the longer one. The main idea be-
hind MASS is substituting the required dot product by a
FFT-based algorithm for calculating the cross-correlation
between the compared vectors, often referred to as sliding
dot-product. Besides, we can pre-calculate the quadratic
sums required by the ED and reuse it when necessary.

Consider n the length of the long feature vector and m
the length of the assessed subsequence. The main advan-
tage of using MASS is that it reduces the subsequence sim-
ilarity search’s complexity from O(nm) to O(n log n) by
using the FFT to find the windowed dot-products instead
a brute-force approach [29]. Moreover, these dot-products
can be reused to calculate SiMPle even faster [22].

In this paper, we propose a new method that sums up
the advantages of Triplets and SiMPle in a single solution.
Our algorithm is described in the next section.

3. SUMMARIZING AND COMPARING
RECORDINGS

We propose the Summarizing and Comparing (SuCo)
method. As the name suggests, it is split into two main
procedures. The first one summarizes the reference record-
ings based on SiMPle. To ensure the time efficiency of
our method, we use the faster version of SiMPle’s algo-
rithm [22]. The second part refers to the way that a query is
compared to these summaries to estimate a distance value
between the query and each reference recording.

3.1 Summarization

Summarizing music files is not a novel procedure. Al-
though a few algorithm use it as a intermediate step (e.g.
Triplets for CSI), it is usually the final procedure in some
specific tasks, such as thumbnailing [1]. In this work,
we use the SiMPle to summarize music data as the first
step of our algorithm. Using this representation of subse-
quences similarities, we summarize the music files in five
excerpts 1 using two different approaches, which are de-
scribed in the next sub-sections.

1 The number of summaries per song is a parameter, which we set to
5. For details, please refer to Section 4.2.

The summarization step can be seen as a training phase,
similar to what is done by Triplets. However, while sum-
marizing in Triplets depends on comparing each record-
ing with the entire dataset, our approach processes each
recording independently. This implies that (i) summariza-
tion in SuCo is naturally parallelizable, and (ii) once a new
original recording is added, it is only necessary to summa-
rize it and add this summary to our set of summaries. The
latter operation takes only hundredths of a second.

3.1.1 Thumbnailing

Thumbnailing relies on summarizing a recording in one
short segment that best represents it. A thumbnail en-
ables for example a listener to quickly identify a song or
its marked characteristics.

A possible definition of a good thumbnail is the excerpt
of the song that is most times repeated [1]. Based on this
definition, Silva et al. [22] use the subsequence that most
appears in the SiMPle index as the thumbnail of a track.
This is the subsequence that is most times considered the
nearest neighbor of other fragments. In practical terms, the
thumbnail is the mode of the SiMPle index. In case of a tie,
the subsequence chosen is the one with lowest mean dis-
tance to the segments that point at it in the SiMPle index.

In SuCo we use this same step as our first summary,
and combine it with four other in a set of five segments
that summarizes each recording. The extra segments are
consider that is desirable to extract summaries that faith-
fully describe the song but they need to be diverse. In other
words, we avoid describing music with similar excerpts, as
this aggregates little information to the retrieval step.

That said, after we choose a summary, we exclude from
the choices of next summaries all the subsequences that
have it as the nearest neighbor. From a practical stand-
point, we keep the count of times that each subsequence is
denoted as the nearest neighbor in the SiMPle index and
use this information to decide the next summary. When
we select a subsequence as a summary, we turn to zero the
count regarding each of the subsequences that point at the
current summary in the SiMPle index.

Similarly, we make subsequences around each picked
summary also ineligible for next summaries. Let p be the
position of the current thumbnail and w a constant defined
as one-quarter of the assessed subsequences’ length. We
turn to zero the neighbor count for all subsequences start-
ing at pi ∈ [p− w, p+ w].

3.1.2 Diverse repeated pattern

While the thumbnail-based summaries rely on the SiMPle
index, we also propose a summarization method based on
the distances stored by SiMPle. We count on the fact that
small distances mean faithfully repeated patterns. These
excerpts are very likely to be more precisely repeated be-
cause they are more significant to describe the song. For
instance, a guitar solo is not similar to other points of the
song. Also, that is not a good summary for the cover song
recognition, since many covers skip, modify or poorly per-
form these parts of the song.

734 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



As in the thumbnail version, this summarization pro-
cess also aims to pick diverse patterns. For this, we use a
technique based on that proposed by Dau and Keogh [7].
The main idea of this process is to, after picking a subse-
quence as a summary, increase the value in the SiMPle of
the subsequences that are similar to the current summary.
This procedure reduces the chance that we choose similar
summaries to describe a song.

More precisely, after choosing a summary, we calculate
the distance from it to all the subsequences in the song,
using MASS. This provides us a vector of distance which
has the same length than SiMPle. Then, we normalize this
vector in the interval [0, 1], being that the position storing
1 represents the most distant subsequence and 0 appears at
the position of the current summary. Finally, we perform
a point-by-point division of the SiMPle by this vector. As
similar subsequences have a (normalized) distance close to
zero, the division will make its relative positions in SiMPle
significantly increase its values. Consequently, they will
unlikely be chosen as a summary in the next iterations. We
refer the reader to the paper that first proposed this proce-
dure [7] for a formal definition of it.

In addition to the described procedure, we also make
ineligible the subsequences that are around the picked
summaries. Similarly to the thumbnail, we set a region
pi ∈ [p − w, p + w] of ineligible subsequences. The dif-
ference here is that we set as infinite the values at these
positions in the SiMPle.

3.1.3 Pitch profiles

In addition to the summaries, the global pitch class profile
are also stored in our procedure. This profile is the normal-
ized sum of each bin of the chroma vectors that describe
the recording [20]. This is necessary to apply OTI and,
consequently, provide invariance to key differences when
calculating the distances for a new query recording.

3.2 Distance Calculation

When a new query is presented to the CSI system, SuCo
must compare it to each song in the reference database and
return a ranking by similarity. In our proposal, we match
the query with each summary of each original recording.
For this, we again take advantage of the algorithm MASS.

Given a query q, the steps to compare q with the original
recordings are:

1. Calculate the global pitch profile of q and the statis-
tics required by MASS, i.e., its sliding quadratic
sums and its FFT (which is used to calculate the slid-
ing dot-product). We only need to calculate these
values once and, then, use them in every posterior
distance calculations.

2. From an original recording r, compare its pitch pro-
file with the profile obtained from q. Then, rotate the
chroma vector of each summary of r accordingly.

3. Using the values calculate in the previous steps, cal-
culate the distances between q and each summary of

r. Store the lowest distance value, i.e., the distance
between the summary and the subsequence from q
that best matches it.

4. The final distance between q and r is given by the
geometric mean of the distances stored in the previ-
ous step. The geometric mean benefits low values in
its calculation, favoring the match between q and the
reference songs with one or more summaries with a
good approximate match.

4. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of the
proposed methods. For the sake of reproducibility, all code
and detailed results are provided in a supplementary web-
site 2 .

This section is split in distinct topics regarding different
phases of our evaluation. First, we describe the datasets we
used. Next, we present the experimental setup regarding
feature extraction, parameter setting, evaluation measures,
and adversary methods. Finally, we present the results of
experiments regarding time and retrieval performances.

For simplicity, we refer to our summarizing and com-
paring methods by thumbnails and diverse repeated pat-
terns as SuCo-thumb and SuCo-repeat, respectively.

4.1 Datasets

The datasets used in our experiments include popular and
classical music with different sizes. We opted to use the
same data as in the paper that proposed SiMPle, so that
results are directly comparable. The datasets are:

• YouTubeCovers: This dataset is composed of 50
popular songs of different genres, with seven record-
ings each. The data is split in pre-defined refer-
ence/training and test partitions. The reference set
comprises the original (studio) recording and a live
version performed by the same artist for each song.
The test set is, therefore, composed of five different
versions of each song in the dataset.

• Mazurkas: This dataset is a collection of clas-
sical music. It comprises 2914 distinct record-
ings of 49 Chopin’s Mazurkas obtained from the
Mazurka Project 3 . The number of performances
of each piece varies between 41 and 95. Unlike
the YouTubeCovers dataset, the Mazurkas is not
split into default partitions. We therefore assess this
dataset using the leave-one-out approach.

4.2 Experimental Setup

To detail our experimental setup, we next describe the ap-
plied feature sets, the parameters of our method, and how
we compare results.

2 https://sites.google.com/view/sucomusic
3 www.mazurka.org.uk/

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 735



4.2.1 Feature Extraction

Although some work explores the combination of differ-
ent features to improve retrieval performance [17, 25], the
usual procedure in the literature is to apply chroma-based
features [8, 9, 12, 21, 23] that describe pitch perceived over
time. More recently, deep learning-based methods have
been used to extract cleaner chroma features from audio.
In this work, we extract deep-chroma features [13] to de-
scribe the recordings in our datasets, using the Madmom
tool library [5].

Since the Euclidean distance is sensitive to tempo dif-
ferences, features are smoothed to provide robustness
against this issue. Specifically, we used the technique ap-
plied by CENS, which uses a Hann window to smooth fea-
tures in the time axis. Moreover, we reduced the dimen-
sionality of the temporal axis of the chroma vectors by a
factor of five. At the end of this procedure, each record-
ing is represented by a vector containing two (smoothed)
deep-chroma values per second of audio.

4.2.2 Parameter Settings

The two parameters of our method are the number and
length of subsequences used to describe reference songs.
We assessed three values of relative summary length: 10,
20, and 30 seconds (i.e., 20, 40, and 60 consecutive fea-
tures). Using 10 seconds provide the worst results, and
these results are not shown, while they point that using too
small windows hampers performance.

Similarly, we assessed results using 1, 3 and 5 subse-
quences as the summaries set. We notice that while vary-
ing the set size does not significantly affect runtime, but
the retrieval performance is clearly superior when using
five segments.

Given the results of this parameter exploration, we
henceforth present the results using five summaries of
30 seconds for the YouTubeCovers data. Because some
recordings in the Mazurkas dataset are too short to apply
summarization with 30 seconds per summary, we present
results on this dataset using 20-second summaries.

4.2.3 Evaluation Measures and Compared Algorithms

Our evaluation consider three common evaluation mea-
sures: mean average precision (MAP); precision at 10
(P@10); and mean rank of first correct match (MR1).
These measures allow us to compare SuCo against results
presented in the literature.

For the YouTubeCovers, our experiments compare
SuCo, Triplets [24], SiMPle [23], and a recent technique
based on the 2-D Fourier Transform (which we refer as 2D-
FT) [19]. The Mazurkas dataset has been less often used
in the literature, so it is only possible to compare SuCo
against SiMPle with this dataset.

Because previous evaluations of SiMPle did not use
deep-chroma features, to isolate whether accuracy im-
provements in SuCo compared to previous ideas in SiM-
Ple happen due to its use of deep-chromas or algorithmic
improvements, we also run SiMPle with the same deep-
chroma feature vector used by SuCo.

4.3 Runtime Performance

A central goal of SuCo is to create a fast method for
similarity-based music information retrieval. We thus first
focus on evaluating its runtime in our datasets 4 .

Note that this evaluation does not consider the duration
of feature extraction, since it is common to all methods.
Also, although we report the total runtime of SuCo’s sum-
marizing and comparing procedure, in practice the sum-
marization is only performed once. For the SiMPle-based
CSI, the reported runtime regards only the retrieval phase,
as it does not rely on a training phase.

In the YouTubeCovers dataset, SuCo-thumb and SuCo-
repeat run in 136 and 134 seconds, respectively. On the
other hand, the SiMPle-based CSI took 4,192 seconds to
assess the same dataset. That is, while our method takes a
little more than 2 minutes to run, SiMPle (which is consid-
ered a fast algorithm) needs more than one hour. SuCo is
more than 30 times faster than SiMPle.

This difference can be further observed in the Mazurkas
dataset. While SuCo-thumb and SuCo-repeat take around
10 and 13 hours, respectively, to run the complete process,
SiMPle only assess around 240 queries – out of 2914 – in
the same runtime. This shows that in this larger dataset,
SuCo is two order of magnitudes faster than SiMPle. In-
deed, we aborted the execution of SiMPle for this dataset.

To break down the runtime for summarization and com-
parison in the SuCo pipeline, we isolate the runtime for
summarizing in the YouTubeCovers dataset. This dataset
has 100 reference recordings, and the summarization step
for it takes around 20 seconds. This means that summa-
rizing a new reference track takes around 0.2 seconds, and
therefore that incrementing the training set using SuCo is
nearly instantaneous.

4.4 Retrieval Performance

After efficiency, our second evaluation criteria is accuracy.
Table 1 presents the results for our accuracy evaluation
measures in the YouTubeCovers dataset. The SiMPle-deep
refers to running regular SiMPle algorithm on the deep-
chroma features.

Algorithm MAP P@10 MR1
Triplets [24] 0.48 0.13 8.49
SiMPle [23] 0.59 0.14 7.91
2D-FT [19] 0.65 0.14 8.27
SiMPle-Deep 0.78 0.17 3.66
SuCo-thumb 0.65 0.15 5.13
SuCo-repeat 0.74 0.17 3.80

Table 1: Results on the YouTubeCovers dataset

The results of SuCo and SiMPle-deep are a significant
improvement over previous results presented in the litera-
ture for this dataset. SiMPle-deep presented the best results

4 This version of SuCo is implemented in Matlab. The experiments
were carried out in a desktop computer with 16 Intel(R) Core(TM) i7 −
2600K CPU @ 3.20GHz and 64Gb of memory running Ubuntu 16.04.
Also, at any time, there was only one process computing SuCO.

736 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



in this experiment, while SuCo-repeat achieved a very sim-
ilar performance.

Table 2 presents the results for the Mazurkas classical
music dataset.

Algorithm MAP P@10 MR1
SiMPle [23] 0.88 0.95 2.33
SuCo-thumb 0.83 0.93 2.83
SuCo-repeat 0.85 0.94 2.77

Table 2: Results on the Mazurkas dataset

Like in the YouTubeCovers data, SiMPle displays a
slightly better performance than SuCo, in this case even
without the deep-learned chroma features.

Taken together, the results on the two datasets point that
SuCo is able to attain an accuracy very close to the best
performing method while providing a much higher perfor-
mance, with much lower runtime.

Besides, we notice that we may spend an extra few
time to enhance our distance calculation, improving our re-
trieval performance and not significantly affecting the run-
time. We discuss this topic in the next section.

5. ON REFINING THE EUCLIDEAN DISTANCE

The main purpose of using the Euclidean distance is its
time efficiency and the possibility of exploring algorithms
to further speeding up its application. However, we under-
stand that it has a negative impact on the efficacy, since ED
is sensitive to different distortions in the data.

While we reduce the impact of tempo variances by
smoothing the feature vectors, our method is still sensi-
tive to major differences. Applying a distance measure
which is more robust to tempo differences in the entire
SuCo pipeline could completely compromise our runtime
performance. However, we believe that “refining” the dis-
tance calculation by some of these functions can improve
our results.

To assure this argument, we made a subtle modifica-
tion of the comparison algorithm. Once the best subse-
quence match is found using ED, we re-calculate the dis-
tance of the matched pair using the Open-End Dynamic
Time Warping (DTW) [15] with a relative warping win-
dow of 10% of the subsequence length. For simplicity, we
will refer to this optimization as SuCo-DTW.

Before presenting the results, we discuss another char-
acteristic that may affect the ED calculation: the complex-
ity of the data. Batista et al. [2] show that more complex
time series, i.e., with high variations between consecutive
observations, tends to present higher distances to its neigh-
bors. Figure 2 illustrates an example of a simpler and a
more complex chroma pattern.

To circumvent this issue, we estimate the complexity of
each summary by the standard deviation of its chroma di-
mensions. The mean complexity of the twelve dimensions
is taken as the summary’s complexity estimate. Finally, we
adjust the distance of a query to each summary by diving it

(a) Low-complex chroma (b) High-complex chroma

Figure 2: Examples of two different summaries with
clearly different complexities

by the complexity estimate. For simplicity, we refer to this
approach as SuCo-complexity.

To test our assumptions, we ran an experiment using
these strategies on the YouTubeCovers dataset. Table 3
presents the results. In this experiment both SuCo-DTW
and SuCo-complexity use the diverse repeated patterns as
the summarizing method. As previously noted, we did not
run the complete SiMPle-deep for the Mazurkas data, due
to its impracticable runtime.

Algorithm MAP P@10 MR1
SiMPle-Deep 0.78 0.17 3.66
SuCo-DTW 0.80 0.18 3.42
SuCo-complexity 0.78 0.17 5.09

Table 3: Results on the YouTubeCovers dataset

Finally, refining the distance calculation does not
severely affect the algorithm runtime. For instance, cal-
culating the estimate complexities and “fix” the whole dis-
tance matrix in the YouTubeCovers dataset takes only 0.4
seconds. Also, the total runtime for running SuCo-DTW
takes 459 seconds for the entire pipeline. Although it
is slower than SuCO-thumb and SuCo-repeat, it is still
around ten times faster than SiMPle and presents better re-
trieval performance. Investigating this kind of efficiency-
precision trade-offs is part of our future works, presented
with other concluding remarks in the next section.

6. CONCLUDING REMARKS

This paper presents and evaluates SuCo, a suite of meth-
ods for summarizing and comparing music data for fast
content-based information retrieval. The techniques devel-
oped focus on the identification of cover songs. Our results
demonstrate that it is possible to achieve results that are
close to state-of-the-art algorithms while performing up to
two orders of magnitudes faster depending on the dataset.
Further improvements on the precision of SuCo with sim-
ple post-processing methods were also explored.

Future work may explore the SuCo pipeline in varied
applications which rely on similarity comparisons. It also
seems promising to further investigate methods to be added
to this pipeline to improve precision. Future work may
for example experiment with varied features and similarity
measures, as well as with fusing different approaches to
improve the retrieval efficacy [22].

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 737



7. ACKNOWLEDGEMENT

This work was funded by grants #2013/26151-5
and #2018/11755-6 São Paulo Research Foundation
(FAPESP).

8. REFERENCES

[1] Mark A Bartsch and Gregory H Wakefield. Audio
thumbnailing of popular music using chroma-based
representations. IEEE Transactions on Multimedia,
7(1):96–104, 2005.

[2] Gustavo EAPA Batista, Eamonn J Keogh, Oben Moses
Tataw, and Vinicius MA De Souza. Cid: an effi-
cient complexity-invariant distance for time series.
Data Mining and Knowledge Discovery, 28(3):634–
669, 2014.

[3] Juan Pablo Bello. Audio-based cover song retrieval us-
ing approximate chord sequences: Testing shifts, gaps,
swaps and beats. In International Society for Music In-
formation Retrieval Conference, volume 7, pages 239–
244, 2007.

[4] Thierry Bertin-Mahieux and Daniel PW Ellis. Large-
scale cover song recognition using the 2d Fourier trans-
form magnitude. In International Society for Music In-
formation Retrieval Conference, pages 241–246, 2012.

[5] Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Flo-
rian Krebs, and Gerhard Widmer. Madmom: A new
Python audio and music signal processing library.
In ACM Multimedia Conference, pages 1174–1178.
ACM, 2016.

[6] Ning Chen, Wei Li, and Haidong Xiao. Fusing similar-
ity functions for cover song identification. Multimedia
Tools and Applications, 77(2):2629–2652, 2018.

[7] Hoang Anh Dau and Eamonn Keogh. Matrix profile v:
A generic technique to incorporate domain knowledge
into motif discovery. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 125–134. ACM, 2017.

[8] Daniel PW Ellis and Graham E Poliner. Identifying-
cover songs’ with chroma features and dynamic pro-
gramming beat tracking. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
volume 4, pages IV–1429. IEEE, 2007.

[9] Jiunn-Tsair Fang, Yu-Ruey Chang, and Pao-Chi
Chang. Deep learning of chroma representation for
cover song identification in compression domain.
Multidimensional Systems and Signal Processing,
29(3):887–902, 2018.

[10] Eric J Humphrey, Oriol Nieto, and Juan Pablo Bello.
Data driven and discriminative projections for large-
scale cover song identification. In International Soci-
ety for Music Information Retrieval Conference, pages
149–154, 2013.

[11] Jesper Hojvang Jensen, Mads G Christensen,
Daniel PW Ellis, and Soren Holdt Jensen. A
tempo-insensitive distance measure for cover song
identification based on chroma features. In IEEE
International Conference on Acoustics, Speech and
Signal Processing, pages 2209–2212. IEEE, 2008.

[12] Maksim Khadkevich and Maurizio Omologo. Large-
scale cover song identification using chord profiles. In
International Society for Music Information Retrieval
Conference, pages 233–238, 2013.

[13] Filip Korzeniowski and Gerhard Widmer. Feature
learning for chord recognition: The deep chroma ex-
tractor. In International Society for Music Information
Retrieval Conference, pages 37–43, 2016.

[14] Abdullah Mueen, Yan Zhu, Michael Yeh, Kaveh Kam-
gar, Krishnamurthy Viswanathan, Chetan Gupta, and
Eamonn Keogh. The fastest similarity search algo-
rithm for time series subsequences under euclidean dis-
tance, August 2017. http://www.cs.unm.edu/
˜mueen/FastestSimilaritySearch.html.

[15] M Muller. Dynamic time warping (DTW). Information
Retrieval for Music and Motion, pages 70–83, 2007.

[16] Meinard Muller, Frank Kurth, and Michael Clausen.
Chroma-based statistical audio features for audio
matching. In Applications of Signal Processing to Au-
dio and Acoustics, 2005. IEEE Workshop on, pages
275–278. IEEE, 2005.

[17] Julien Osmalsky, Jean-Jacques Embrechts, Peter Fos-
ter, and Simon Dixon. Combining features for cover
song identification. In International Society for Mu-
sic Information Retrieval Conference, pages 462–468,
2015.

[18] Julien Osmalskyj, Sébastien Piérard, Marc
Van Droogenbroeck, and Jean-Jacques Embrechts.
Efficient database pruning for large-scale cover song
recognition. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pages
714–718. IEEE, 2013.

[19] Prem Seetharaman and Zafar Rafii. Cover song identi-
fication with 2d Fourier transform sequences. In IEEE
International Conference on Acoustics, Speech and
Signal Processing, pages 616–620. IEEE, 2017.

[20] Joan Serra, Emilia Gómez, and Perfecto Herrera.
Transposing chroma representations to a common key.
In IEEE CS Conference on The Use of Symbols to Rep-
resent Music and Multimedia Objects, pages 45–48,
2008.

[21] Joan Serra, Emilia Gómez, Perfecto Herrera, and
Xavier Serra. Chroma binary similarity and local align-
ment applied to cover song identification. IEEE Trans-
actions on Audio, Speech, and Language Processing,
16(6):1138–1151, 2008.

738 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



[22] D. F. Silva, C. M. Yeh, Y. Zhu, E. Keogh, and G. E. A.
P. A. Batista. Fast similarity matrix profile for music
analysis and exploration. IEEE Transactions on Multi-
media, 2018 (in press).

[23] Diego F Silva, Chin-Chia M Yeh, Gustavo Enrique
de Almeida Prado Alves Batista, and Eamonn Keogh.
Simple: Assessing music similarity using subse-
quences joins. In International Society for Music In-
formation Retrieval Conference, pages 23–29, 2016.

[24] Diego Furtado Silva, Vinı́cius Mourão Alves de Souza,
and Gustavo Enrique de Almeida Prado Alves Batista.
Music shapelets for fast cover song regognition. In
International Society for Music Information Retrieval
Conference, pages 441–447, 2015.

[25] Christopher J Tralie. Early MFCC and HPCP fusion for
robust cover song identification. In International Soci-
ety for Music Information Retrieval Conference, pages
294–301, 2017.

[26] Christopher J Tralie and Paul Bendich. Cover song
identification with timbral shape sequences. In Inter-
national Society for Music Information Retrieval Con-
ference, pages 38–44, 2015.

[27] Wei-Ho Tsai, Hung-Ming Yu, Hsin-Min Wang, and
Jorng-Tzong Horng. Using the similarity of main
melodies to identify cover versions of popular songs
for music document retrieval. Journal of Information
Science & Engineering, 24(6), 2008.

[28] Fan Yang and Ning Chen. Cover song identification
based on cross recurrence plot and local alignment. J.
East China Univ. Sci. Technol, 42(2):247–253, 2016.

[29] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova,
Nurjahan Begum, Yifei Ding, Hoang Anh Dau,
Zachary Zimmerman, Diego Furtado Silva, Abdullah
Mueen, and Eamonn Keogh. Time series joins, motifs,
discords and shapelets: a unifying view that exploits
the matrix profile. Data Mining and Knowledge Dis-
covery, 32(1):83–123, 2018.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 739


