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ABSTRACT

Score following is the process of tracking a musical per-
formance (audio) with respect to a known symbolic rep-
resentation (a score). We start this paper by formulating
score following as a multimodal Markov Decision Process,
the mathematical foundation for sequential decision mak-
ing. Given this formal definition, we address the score fol-
lowing task with state-of-the-art deep reinforcement learn-
ing (RL) algorithms such as synchronous advantage ac-
tor critic (A2C). In particular, we design multimodal RL
agents that simultaneously learn to listen to music, read
the scores from images of sheet music, and follow the au-
dio along in the sheet, in an end-to-end fashion. All this
behavior is learned entirely from scratch, based on a weak
and potentially delayed reward signal that indicates to the
agent how close it is to the correct position in the score.
Besides discussing the theoretical advantages of this learn-
ing paradigm, we show in experiments that it is in fact su-
perior compared to previously proposed methods for score
following in raw sheet music images.

1. INTRODUCTION

This paper addresses the problem of score following in
sheet music images. The task of an automatic score follow-
ing system is to follow a musical performance with respect
to a known symbolical representation, the score (cf. Fig-
ure 1). In contrast to audio-score alignment in general [20],
all of this takes place in an on-line fashion. Score follow-
ing itself has a long history in Music Information Retrieval
(MIR) and forms the basis for many subsequent applica-
tions such as automatic page turning [2], automatic accom-
paniment [6,23] or the synchronization of visualizations to
the live music during concerts [1,22].

Traditional approaches to the task depend on a sym-
bolic, computer-readable representation of the score, such
as MusicXML or MIDI (see e.g. [1,6,10,14,16,17,21-23]).
This representation is created either manually (e.g. via the
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Figure 1. Sketch of score following in sheet music. Given
the incoming audio, the score follower has to track the cor-
responding position in the score (image).

time-consuming process of (re-)setting the score in a mu-
sic notation program), or automatically via optical music
recognition software [3,4, 12]. However, automatic meth-
ods are still unreliable and thus of limited use, especially
for more complex music like orchestra pieces [26].

To avoid these complications, [7] proposes a multi-
modal deep neural network that directly learns to match
sheet music and audio in an end-to-end fashion. Given
short excerpts of audio and the corresponding sheet music,
the network learns to predict which location in the given
sheet image best matches the current audio excerpt. In
this setup, score following can be formulated as a multi-
modal localization task. However, one problem with this
approach is that successive time steps are treated indepen-
dently from each other. We will see in our experiments
that this causes jumps in the tracking process especially in
the presence of repetitive passages. A related approach [8]
trains a multimodal neural network to learn a joint embed-
ding space for snippets of sheet music and corresponding
short excerpts of audio. The learned embedding allows to
compare observations across modalities, e.g., via their co-
sine distance. This learned cross-modal similarity measure
is then used to compute an off-line alignment between au-
dio and sheet music via dynamic time warping.

Our proposal is inspired by these works, but uses a fun-
damentally different machine learning paradigm. The cen-
tral idea is to interpret score following as a multimodal con-
trol problem [9] where the agent has to navigate through
the score by adopting its reading speed in reaction to the
currently playing performance. To operationalize this no-
tion, we formulate score following as a Markov Decision
Process (MDP) in Section 3. MDPs are the mathemati-
cal foundation for sequential decision making and permit
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us to address the problem with state-of-the-art Deep Re-
inforcement Learning (RL) algorithms (Section 4). Based
on the MDP formulation, we design agents that consider
both the score and the currently playing music to achieve
an overall goal, that is to track the correct position in the
score for as long as possible. This kind of interaction is
very similar to controlling an agent in a video game, which
is why we term our MDP the score following game; it is
in fact inspired by the seminal paper by Mnih et al. [19]
which made a major contribution to the revival of deep
RL by achieving impressive results in a large variety of
Atari games. In experiments with monophonic as well as
polyphonic music (Section 5), we will show that the RL
approach is indeed superior to previously proposed score
following methods [7]. The code for the score following
game is available at https://github.com/CPJKU/
score_following_game.

2. DESCRIPTION OF DATA

To set the stage, we first need to describe the kind of
data needed for training and evaluating the multimodal RL
score following agents. We assume here that we are given
a collection of piano pieces represented as pairs of audio
recordings and sheet music images. In order to train our
models and to later quantify the score following error, we
first need to establish correspondences between individual
pixel locations of the note heads in a sheet and their respec-
tive counterparts (note onset events) in the respective audio
recordings. This has to be done either in a manual annota-
tion process or by relying on synthetic training data which
is generated from digital sheet music formats such as Mus-
escore or Lilypond. As this kind of data representation is
identical to the one used in [7, 8] we refer to these works
for a detailed description of the entire alignment process.

3. SCORE FOLLOWING AS A
MARKOYV DECISION PROCESS

Reinforcement learning can be seen as a computational ap-
proach to learning from interaction to achieve a certain pre-
defined goal. In this section, we formulate the task of score
following as a Markov Decision Process (MDP), the math-
ematical foundation for reinforcement learning or, more
generally, for the problem of sequential decision making ! .
Figure 2 provides an overview of the components involved
in the score following MDP.

The score following agent (or learner) is the active
component that interacts with its environment, which in
our case is the score following game. The interaction takes
place in a closed loop where the environment confronts
the agent with a new situation (a state S;) and the agent
has to respond by making a decision, selecting one out
of a predefined set of possible actions A;. After each ac-
tion taken the agent receives the next state S;; and a nu-
merical reward signal R;,, indicating how well it is do-
ing in achieving the overall goal. Informally, the agent’s
goal in our case is to track a performance in the score

! The notation in this paper follows the book by Barto and Sutton [25]
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Figure 2. Sketch of the score following MDP. The agent
receives the current state of the environment S; and a scalar
reward signal R, for the action taken in the previous time
step. Based on the current state it has to choose an ac-
tion (e.g. decide whether to increase, keep or decrease its
speed in the score) in order to maximize future reward by
correctly following the performance in the score.
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Figure 3. Markov state of the score following MDP: the
current sheet sliding window and spectrogram excerpt. To
capture the dynamics of the environment we also add the
one step differences (A) wrt. the previous time step (state).

as accurately and robustly as possible; this criterion will
be formalized in terms of an appropriate reward signal in
Section 3.3 below. By running the MDP interaction loop
we end up with a sequence of states, actions and rewards
So, Ao, R1,S1, A1, R, Sa, Ao, R3, ..., which is the kind
of experience a RL agent is learning its behavior from.
We will elaborate on different variants of the learning pro-
cess in Section 4. The remainder of this section specifies
all components of the score following MDP in detail. In
practice, our MDP is implemented as an environment in
OpenAI-Gym 2, an open source toolkit for developing and
comparing reinforcement learning algorithms.

3.1 Score Following Markov States

Our agents need to operate on two different inputs at the
same time, which together form the state S; of the MDP:
input modality one is a sliding window of the sheet image
of the current piece, and modality two is an audio spectro-
gram excerpt of the most recently played music (~ 2 sec-
onds). Figure 3 shows an example of this input data for a
piece by J.S. Bach. Given the audio excerpt as an input the
agent’s task is to navigate through the global score to con-
stantly receive sheet windows from the environment that
match the currently playing music. How this interaction
with the score takes place is explained in the next subsec-
tion. The important part for now is to note that score fol-

2https://gym.openai.com/
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lowing embodies dynamics which have to be captured by
our state formulation, in order for the process to satisfy the
Markov property. Therefore, we extend the state represen-
tation by adding the one step differences (A) of both the
score and the spectrogram. With the A images and spec-
trograms a state contains all the information needed by the
agent to determine where and how fast it is moving along
in the sheet image.

3.2 Agents, Actions and Policies

The next item in the MDP (Figure 2) is the agent, which
is the component interacting with the environment by tak-
ing actions as a response to states received. As already
mentioned, we interpret score following as a multimodal
control problem where the agent decides how fast it would
like to progress in the score. In more precise terms, the
agent controls its score progression speed vy, in pixels
per time step by selecting from a set of actions A; €
{—Avpy, 0, +Avpy } after receiving state Sy in each time
step. Actions +Aw,,; increase or decrease the speed by a
value of Ay, pixels per time step. Action a; = 0 keeps it
unchanged. To give an example: a pixel speed of v, = 14
would shift the sliding sheet window 14 pixels forward (to
the right) in the global unrolled score.

Finally, we introduce the concept of a policy mg(als) to
define an agent’s behavior. 7 is a conditional probability
distribution over actions conditioned on the current state.
Given a state s, it computes an action selection probabil-
ity mo(als) for each of the candidate actions a € A;. The
probabilities are then used for sampling one of the possi-
ble actions. In Section 4 we explain how to use deep neural
networks as function approximators for policy mg by opti-
mizing the parameters © of a policy network.

3.3 Goal Definition: Reward Signal and State Values

In order to learn a useful action selection policy, the agent
needs feedback. This means that we need to define how to
report back to the agent how well it does in accomplishing
the task and, more importantly, what the task actually is.
The one component in an MDP that defines the over-
all goal is the reward signal R; € R. It is provided by
the environment in form of a scalar, each time the agent
performs an action. The sole objective of a RL agent is
to maximize the cumulative reward over time. Note, that
achieving this objective requires foresight and planning, as
actions leading to high instantaneous reward might lead
to unfavorable situations in the future. To quantify this
longterm success, RL introduces the return G which is de-
fined as the discounted cumulative future reward: G; =
Rii1 +7Riyo +72Ryy3+ - --. The discount rate y (with
0.0 < v < 1.0, in our case 0.9) is a hyper-parameter as-
signing less weight to future rewards if smaller than 1.0.
Figure 4 summarizes the reward computation in our
score following MDP. Given annotated training data as de-
scribed in Section 2, the environment knows, for each on-
set time in the audio, the true target position x in the score.
From this, and the current position % of the agent, we com-
pute the current tracking error as d, = & — x, and define
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Figure 4. Reward definition in the score following MDP.
The reward R; decays linearly (range [0, 1]) depending on
the agent’s distance d,. to the current true score position .

the reward signal r within a predefined tracking window
[z — b, z + b] around target position z as: r = 1.0 — |d,|/b.
Thus, the reward per time step reaches its maximum of 1.0
when the agent’s position is identical to the target posi-
tion, and decays linearly towards 0.0 as the tracking error
reaches the maximum permitted value b given by the win-
dow size. Whenever the absolute tracking error exceeds
b (the agent drops out of the window), we reset the score
following game (back to start of score, first audio frame).
As an RL agent’s sole objective is to maximize cumulative
future reward, it will learn to match the correct position in
the score and to not lose its target by dropping out of the
window. We define the target onset, corresponding to the
target position in the score, as the rightmost frame in the
spectrogram excerpt. This allows to run the agents on-line,
introducing only the delay required to compute the most
recent spectrogram frame. In practice, we linearly inter-
polate the score positions for spectrogram frames between
two subsequent onsets in order to produce a continuous and
stronger learning signal for training.

As with policy 7, we will use function approximation
to predict the future cumulative reward for a given state
s, estimating how good the current state actually is. This
estimated future reward is termed the value V (s) of state
s. We will see in the next section how state-of-the-art
RL algorithms use these value estimates to stabilize the
variance-prone process of policy learning.

4. LEARNING TO FOLLOW

Given the formal definition of score following as an MDP
we now describe how to address it with reinforcement
learning. Note that there is a large variety of RL algo-
rithms. We focus on policy gradient methods, in particu-
lar the class of actor-critic methods, due to their reported
success in solving control problems [9]. The learners uti-
lized are REINFORCE with Baseline [27] and Synchronous
Advantage Actor Critic (A2C) [18, 28], where the latter is
considered a state-of-the-art approach. As describing the
methods in full detail is beyond the scope of this paper, we
provide an intuition on how the methods work and refer the
reader to the respective papers.
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Figure 5. Multimodal network architecture used for our
score following agents. Given state s the policy network
predicts the action selection probability mg(als) for the
allowed action A; € {—Auvpy,0,+Avpy ). The value
network, sharing parameters with the policy network, pro-
vides a state-value estimate V' (s) for the current state.

4.1 Policy and State-Value Approximation via DNNs

In Section 3, we introduced policy g, determining the be-
havior of an agent, and value function V(s), predicting
how good a certain state s is with respect to cumulative
future reward. Actor-critic methods make use of both con-
cepts. The actor is represented by policy mg and is respon-
sible for selecting the appropriate action in each state. The
critic is represented by the value function V() and helps
the agent to judge how good the selected actions actually
are. In the context of deep RL both functions are approx-
imated via a Deep Neural Network (DNN), termed policy
and value network. We denote the parameters of the policy
network with © in the following.

Figure 5 shows a sketch of such a network architec-
ture. As the authors in [7], we use a multimodal convo-
lutional neural network operating on both sheet music and
audio at the same time. The input to the network is ex-
actly the Markov state of the MDP introduced in Section
3.1. The left part of the network processes sheet images,
the right part spectrogram excerpts (including A images).
After low-level representation learning, the two modali-
ties are merged by concatenation and further processed
using dense layers. This architecture implies that policy
and value network share the parameters of the lower lay-
ers, which is a common choice in RL [18]. Finally, there
are two output layers: the first represents our policy and
predicts the action selection probability mg(als). It con-
tains three output neurons (one for each possible action)
converted into a valid probability distribution via soft-max
activation. The second output layer consists of one lin-
ear output neuron predicting the value V (s) of the current
state. Table 1 lists the exact architectures used for our ex-
periments. We use exponential linear units for all but the
two output layers [5].

Table 1. Network architecture. DO: Dropout, Conv(3, stride-1)-
16: 3x3 convolution, 16 feature maps and stride 1.

Audio (Spectrogram) 78 x 40
Conv(3, stride-1)-32
Conv(3, stride-1)-32
Conv(3, stride-2)-64

Conv(3, stride-1)-64 + DO(0.2)
Conv(3, stride-2)-64
Conv(3, stride-2)-96
Conv(3, stride-1)-96

Conv(1, stride-1)-96 + DO(0.2)

Sheet-Image 80 X 256
Conv(5, stride-(1, 2))-32
Conv(3, stride-1)-32
Conv(3, stride-2)-64
Conv(3, stride-1)-64 + DO(0.2)
Conv(3, stride-2)-64
Conv(3, stride-2)-64 + DO(0.2)
Conv(3, stride-2)-96
Conv(1, stride-1)-96 + DO(0.2)

Dense(512) Dense(512)
Concatenation + Dense(512)
Dense(256) + DO(0.2) Dense(512) + DO(0.2)

Dense(3) - Softmax Dense(1) - Linear

4.2 Learning a Policy via Actor-Critic

One of the first algorithms proposed for optimiz-
ing a policy was REINFORCE [27], a Monte-Carlo
algorithm that learns by generating entire episodes
So, Ao, R1,S51, A1, Rg, Sy, Aa, ... of states, actions and re-
wards by following policy mg while interacting with the
environment. Given this sequence it updates the parame-
ters © of the policy network according to the following up-
date rule by replaying the episode time step by time step:

O «+— @+OéGtV(—) 1H7T(-)(At|St,@) (1)

o is the step size or learning rate and G, is the true
discounted cumulative future reward (the return) received
from time step ¢ onwards. Gradient Vg is the direction in
parameter space in which to go if we want to maximize the
selection probability of the respective action. This means
whenever the agent did well, achieving a high return Gy,
we take larger steps in parameter space towards selecting
the responsible actions. By changing the parameters of
the policy network, we of course also change our policy
(behavior) and we will select beneficial actions more fre-
quently in the future when confronted with similar states.

REINFORCE and policy optimization are known to
have high variance in the gradient estimate [11]. This
results in slow learning and poor convergence properties.
To address this problem, REINFORCE with Baseline
(REINFORCEy,) adapts the update rule of Equation (1) by
subtracting the estimated state value V(s) (see Section 3.3)
from the actual return G; received:

0« O+ (G — V(s))Vo Inmo(A]S:,0)  (2)

This simple adaptation helps to reduce variance and im-
proves convergence. The value network itself is learned
by minimizing the mean squared error between the actu-
ally received return and the predicted value estimate of the
network, (Gy — V/(s))2. REINFORCEy,; will be the first
learning algorithm considered in our experiments.
Actor-critic methods are an extension of the baseline
concept, allowing agents to learn in an online fashion while
interacting with the environment. This avoids the need for
creating entire episodes prior to learning. In particular, our
actor-critic agent will only look into the future a fixed num-
ber of ¢,,4, time steps (in our case, 15). This implies that
we do not have the actual return GG, available for updating
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the value function. The solution is to bootstrap the value
function (i.e., update the value estimate with estimated val-
ues), which is the core characteristic of actor-critic meth-
ods. The authors in [18] propose the Synchronous Ad-
vantage Actor Critic (A2C) and show that running multi-
ple actors (in our case 16) in parallel on different instances
of the same kind of environment, further helps to stabilize
training. We will see in our experiments that this also holds
for the score following task. For a detailed description of
the learning process we refer to the original paper [18].

5. EXPERIMENTAL RESULTS

In this section we experimentally evaluate our RL ap-
proach to score following and compare it to a previously
introduced method [7] that solves the same task. In addi-
tion to quantitative analysis we also provide a video of our
agents interacting with the score following environment. 3

5.1 Experimental Setup

Two different datasets will be used in our experiments. The
Nottingham Dataset comprises 296 monophonic melodies
of folk music (training: 187, validation: 63, testing: 46); it
was already used in [7] to evaluate score following in sheet
music images. The second dataset contains 479 classical
pieces by various composers such as Beethoven, Mozart
and Bach, collected from the freely available Mutopia
Project* (training: 360, validation: 19, testing: 100). It
covers polyphonic music and is a substantially harder chal-
lenge to a score follower. In both cases the sheet music is
typeset with Lilypond and the audios are synthesized from
MIDI using an acoustic piano sound font. This automatic
rendering process provides the precise audio — sheet mu-
sic alignments required for training (see Section 2). For
audio processing we set the computation rate to 20 FPS
and compute log-frequency spectrograms at a sample rate
of 22.05kHz. The FFT is computed with a window size
of 2048 samples and post-processed with a logarithmic fil-
terbank allowing only frequencies from 60Hz to 6kHz (78
frequency bins).

The spectrogram context visible to the agents is set to
40 frames (2 sec. of audio) and the sliding window sheet
images cover 160 x 512 pixels and are further downscaled
by a factor of two before being presented to the network.
As optimizer we use the Adam update rule [15] with an ini-
tial learning rate of 10~% and running average coefficients
of 0.5 and 0.999. We then train the models until there is no
improvement in the number of tracked onsets on the val-
idation set for 50 epochs and reduce the learning rate by
factor 10 three times. The tempo change action Awv,y; is
0.5 for Nottingham and 1.0 for the polyphonic pieces.

5.2 Evaluation Measures and Baselines

Recall from Section 3.3 and Figure 4 that from the agent’s
position & and the ground truth position z, we compute the
tracking error d,. This error is the basis for our evaluation

3 score following video: https://youtu.be/COPNciY510g

4 http://www.mutopiaproject.org/
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Figure 6. Optimal tempo curve and corresponding opti-
mal actions A; for a continuous agent (piece: J. S. Bach,
BWV994). The A; would be the target values for training
an agent with supervised, feed-forward regression.

measures. However, compared to training, we only con-
sider time steps in our evaluation where there is actually
an onset present in the audio. While interpolating inter-
mediate time steps is helpful for creating a stronger learn-
ing signal (Section 3.3), it is not musically meaningful.
Specifically, we will report the evaluation statistics mean
absolute tracking error |d,| as well as its standard devi-
ation std(|d,|) over all test pieces. These two measures
quantify the accuracy of the score followers. To also mea-
sure their robustness we compute the ratio R,,, of overall
tracked onsets as well as the ratio of pieces Ry, tracked
from beginning entirely to the end.

As baseline method we consider the approach described
in [7], which models score following as a multimodal lo-
calization task (denoted by MM-Loc in the following).

As a second baseline, we also tried to train an agent to
solve the score following MDP in a fully supervised fash-
ion. This is theoretically possible, as we know for each
time point the exact corresponding position in the score
image, which permits us to derive an optimal tempo curve
and, consequently, an optimal sequence of tempo changes
for each of the training pieces. Figure 6 shows such an op-
timal tempo curve along with the respective tempo change
actions for a short Bach piece. The latter would serve as
targets y in a supervised regression problem y = f(x).
The network structure used for this experiment is identi-
cal to the one in Figure 5 except for the output layers. In-
stead of policy 7 and value V' we only keep a single linear
output neuron predicting the value of the optimal tempo
change in each time step. However, a closer look at Fig-
ure 6 already reveals the problem inherent in this approach.
The optimal tempo change is close to zero most of the time.
For the remaining time steps we observe sparse spikes of
varying amplitude. When trying to learn to approximate
these optimal tempo changes (with a mean squared error
optimization target), we ended up with a network that pre-
dicts values very close to zero for all its inputs. We con-
clude that the relevant tempo change events are too sparse
for supervised learning and exclude the method from our
tables in the following. Besides these technical difficulties
we will also discuss conceptual advantages of addressing
score following as an MDP in Section 6.
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Method Rtuc Ron |dz| 5td(|d1‘ D

Nottingham (monophonic, 46 test pieces)

MM-Loc [7] 043 065 3.15 13.15
REINFORCE;; 094 096 4.21 4.59
A2C 096 099 217 3.53

Mutopia (polyphonic, 100 test pieces)

MM-Loc [7] 0.61 0.72 62.34 298.14
REINFORCE,;  0.20 035 48.61 41.99
A2C 074 075 19.25 23.23

Table 2. Comparison of score following approaches. Best
results are marked in bold. For A2C and REINFORCEy,;
we report the average over 10 evaluation runs.

5.3 Experimental Results

Table 2 provides a summary of the experimental results.
Looking at the Nottingham dataset, we observe large gaps
in performance between the different approaches. Both
RL based methods manage to follow almost all of the test
pieces completely to the end. In addition, the mean track-
ing error is lower for A2C and shows a substantially lower
standard deviation. The high standard deviation for MM-
Loc is even more evident in the polyphonic pieces. The
reason is that MM-Loc is formulated as a localization task,
predicting a location probability distribution over the score
image given the current audio. Musical passages can be
highly repetitive, which leads to multiple modes in the lo-
cation probability distribution, each of which is equally
probable. As the MM-Loc tracker follows the mode with
highest probability it starts to jump between such ambigu-
ous structures, producing a high standard deviation for the
tracking error and, in the worst case, loses the target.

Our MDP formulation of score following addresses this
issue, as the agent controls its progression speed for navi-
gating through the sheet image. This restricts the agent as
it does not allow for large jumps in the score and, in ad-
dition, is much closer to how music is actually performed
(e.g. from left to right and top to bottom when excluding
repetitions). Our results (especially the ones of A2C) re-
flect this theoretical advantage.

However, in the case of complex polyphonic scores we
also observe that the performance of REINFORCE,; de-
grades completely. The numbers reported are the outcome
of more than five days of training. We already mentioned
in Section 4 that policy optimization is known to have
high variance in the gradient estimate [11], which is ex-
actly what we observe in our experiments. Even though
REINFORCEy; managed to learn a useful policy for the
Nottingham dataset it also took more than five days to ar-
rive at that. In contrast, A2C learns a successful policy for
the Nottingham dataset in less than six hours and outper-
forms the baseline method on both datasets. For Mutopia
it tracks more than 70% of the 100 test pieces entirely to
the end without losing the target a single time. This re-

sult comes with an average error of only 20 pixels which is
about 5mm in a standard A4 page of Western sheet music
— three times more accurate than the baseline with a mean
error of 62 pixels.

We also report the results of REINFORCE,; to em-
phasize the potential of RL in this setting. Recall that
the underlying MDP is the same for both REINFORCE,
and A2C. The only part that changes is a more powerful
learner. All other components including network architec-
ture, optimization algorithm and environment remain un-
touched. Considering that deep RL is currently one of the
most intensively researched areas in machine learning, we
can expect further improvement in the score following task
whenever there is an advance in RL itself.

6. DISCUSSION AND CONCLUSION

We have proposed a formulation of score following in
sheet music images as a Markov decision process and
showed how to address it with state-of-the-art deep rein-
forcement learning. Experimental results on monophonic
and polyphonic piano music show that this is competitive
with recently introduced methods [7]. We would like to
close with a discussion of some specific aspects that point
to interesting future perspectives.

Firstly, we trained all agents using a continuous reward
signal computed by interpolating the target (ground truth)
location between successive onsets and note heads. Re-
inforcement learners can, of course, also learn from a de-
layed signal (e.g. non-zero rewards only at actual onsets or
even bar lines or downbeats). This further implies that we
could, for example, take one of our models trained on the
synthesized audios, annotate a set of real performance au-
dios at the bar level (which is perfectly feasible), and then
fine-tune the models with the very same algorithms, with
the sole difference that for time points without annotation
the environment simply returns a neutral reward of zero.

Secondly, we have already started to experiment with
continuous control agents that directly predict the required
tempo changes, rather than relying on a discrete set of ac-
tion. Continuous control has proven to be very successful
in other domains [9] and would allow for a perfect align-
ment of sheet music and audio (cf. Figure 6).

A final remark concerns RL in general. For many RL
benchmarks we are given a simulated environment that the
agents interact with. These environments are fixed prob-
lems without a natural split into training, validation and
testing situations. This is different in our setting, and one
of the main challenges is to learn agents, which generalize
to unseen pieces and audio conditions. While techniques
such as weight-decay, dropout [24] or batch-normalization
[13] have become a standard tool for regularization in su-
pervised learning they are not researched in the context of
RL. A broad benchmark of these regularizers in the context
of RL would be therefore of high relevance.

We think that all of this makes the score following MDP
a promising and in our opinion very exciting playground
for further research in both music information retrieval and
reinforcement learning.
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