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ABSTRACT

In this work, we present an end-to-end framework for
audio-to-score transcription. To the best of our knowl-
edge, this is the first automatic music transcription ap-
proach which obtains directly a symbolic score from audio,
instead of performing separate stages for piano-roll estima-
tion (pitch detection and note tracking), meter detection or
key estimation. The proposed method is based on a Con-
volutional Recurrent Neural Network architecture directly
trained with pairs of spectrograms and their correspond-
ing symbolic scores in Western notation. Unlike standard
pitch estimation methods, the proposed architecture does
not need the music symbols to be aligned with their au-
dio frames thanks to a Connectionist Temporal Classifica-
tion loss function. Training and evaluation were performed
using a large dataset of short monophonic scores (incip-
its) from the RISM collection, that were synthesized to get
the ground-truth data. Although there is still room for im-
provement, most musical symbols were correctly detected
and the evaluation results validate the proposed approach.
We believe that this end-to-end framework opens new av-
enues for automatic music transcription.

1. INTRODUCTION

Automatic Music Transcription (AMT) is a very relevant
field within the Music Information Retrieval (MIR) com-
munity. This task can be defined as the automated pro-
cess of converting an audio recording into any kind of
musically-meaningful structured format. The usefulness of
this process is very broad, especially for MIR algorithms
such as content-based music search, symbolic music simi-
larity, or symbolic musicological analysis.

However, this is a challenging task and state-of-the-art
methods currently obtain a performance significantly be-
low a human expert. In order to obtain a complete score
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from a waveform, it is necessary to perform pitch detec-
tion, note onset/offset detection, loudness estimation and
quantization, instrument recognition, extraction of rhyth-
mic information, and time quantization [2].

Most music transcription systems focus on two of these
stages: pitch detection, where pitches at each time frame
of the audio are estimated, and note tracking [32], where
the estimations of the previous step are discretized into
sequences of 3-tuples (onset, offset, pitch). The output
in this case is a piano-roll, that is, a two-dimensional
representation of notes across time [2]. Multiple pitch
estimation techniques include spectrogram factorization
methods [1, 3, 28] and discriminative approaches, which
perform frame-by-frame pitch estimation using statistical
models [10], signal processing methods [23, 35], or ma-
chine learning techniques [4] including deep neural net-
works [17,27,30]. Some works also integrate musical lan-
guage models into the pitch estimation process to resolve
output ambiguities [27, 34].

Supervised learning approaches for piano-roll estima-
tion require the ground truth to be aligned for training.
Matching pitches frame by frame with their corresponding
waveform samples is a time-consuming task and, although
there are some efforts in this direction with datasets such as
MAPS [10], RWC [11] or MusicNet [29], currently there
are no very large AMT corpora. Beyond the difficulty of
performing an accurate annotation, frame-by-frame esti-
mation has some additional issues to be taken into account.
For example, when a whole note is played using a plucked
string instrument such as a guitar, the quick decay of its
harmonic amplitudes produces frames with a very low in-
tensity at the end of the note, causing ambiguities when
labeling the offset frames.

In addition, as pointed out in [2], AMT algorithms are
usually developed independently to carry out individual
tasks such as multiple pitch detection, beat tracking and in-
strument recognition. Some existing AMT methods, such
as the ones proposed in [19–21], also include rhythm esti-
mation and time quantization. Still, the challenge remains
to combine the outputs of the individual tasks to perform
joint estimation of all parameters, in order to avoid the cas-
cading of errors when algorithms are combined sequen-
tially.

In this work we intend to open a new framework to ad-
dress the AMT task. Our proposal is to consider end-to-
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end machine learning strategies, with which this task can
be carried out holistically. In other words, we aim at us-
ing a waveform as input, and directly obtaining a music
score at the output taking into account all its components
(pitches, note durations, time signature, key signature, etc.)
jointly.

The task of directly estimating a symbolic score from
audio is certainly different from that of estimating a piano-
roll. While piano-roll estimation aims to extract what has
been played from the audio as exact as possible, in the
score transcription task the goal is to obtain a symbolic rep-
resentation from what the musician read, which includes
abstracting away some information such as loudness.

For this, we address score estimation using Deep Neural
Networks. We specifically consider the use of a Convolu-
tional Recurrent Neural Network, which is responsible of
both processing the input spectrogram to extract meaning-
ful features and predict an output sequence that represents
the music contained in a given audio recording. Thanks
to the Connectionist Temporal Classification (CTC) loss
function, this kind of networks can be trained in terms
of pairs (input, output), without needing of dividing the
process into smaller stages or providing framewise annota-
tions. The idea is that the prediction is forced to be encoded
in terms of actual music-notation elements.

It is important to emphasize that the objective of this
work is not to outperform the accuracy of previous ap-
proaches, but to propose a framework with which to ad-
dress the AMT task. In order to demonstrate the feasibil-
ity of this formulation, our experiments are restricted to a
constrained scenario, using audio recordings from mono-
phonic scores that were synthesized using a piano. We are
aware that the main challenge in AMT is to deal with poly-
phonic real music. In a future work we plan to extend the
proposed approach to detect polyphonic scores, although
its effectiveness with sound mixtures is yet to be studied.

The evaluation results in this constrained scenario val-
idates the proposed framework and show that the the pro-
posed approach obtains reliable results, correctly detecting
most musical symbols.

The rest of the paper is organized as follows: the corpus
used for evaluation is described in Section 2; the holistic
neural framework proposed for the AMT task is described
in Section 3; the series of experiments carried out are de-
tailed in Section 4; and finally, the conclusions of the cur-
rent work are summarized in Section 5, pointing out some
interesting avenues for future work as well.

2. DATASET

In order to get the ground truth for our framework, we
used the RISM 1 collection [26], which currently contains
more than one million incipits (short monophonic music
excerpts). This corpus is very useful for music retrieval
tasks because of its size and the fact that it contains real
music written by human composers [31]. Spectrograms
from synthesized incipits are the inputs to our method, and

1 The complete set of RISM incipits can be downloaded from https:
//opac.rism.info/index.php?id=8&L=1&id=8
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Figure 1: Data acquisition for training. RISM incipits are
converted into our music notation format and magnitude
spectrograms (Short-Time Fourier Transform, STFT) are
also computed from synthesized versions of the incipits.
The inputs of the proposed framework (x) are the symbolic
data and the outputs are the spectrograms (y). Frame-by-
frame alignment is not necessary.

their corresponding symbolic scores are the outputs. The
scheme of the proposed method can be seen in Figure 1.

2.1 Preprocessing

RISM incipits are formatted in Plaine & Easie Code (PAE).
We randomly selected a subset of 71,400 incipits in West-
ern notation and converted them into the music notation
format that can be seen in Table 1, where each symbol is
encoded using a single character. This notation is oriented
to represent the music as a language, similarly to what a
speech recognition system does. Following this analogy,
we consider a music note as a word (for example, C]4 ˇ “)
containing several characters from an alphabet set Σ that
can be seen in Table 1, and which is separated to other
words by blank spaces. Rests are represented in the same
way, with a word consisting of the rest symbol and its du-
ration. In addition to notes and rests, the alphabet set in-
cludes clefs, key and time signatures, measure bars and
note ties. Every musical symbol in Table 1 is encoded for
our framework using a single element (one character).

In order to get the audio files, the RISM PAE incipits
were converted into Music Encoding Initiative (MEI) for-
mat, and then translated again into MIDI using Meico 2 ,
which unlike Verovio 3 takes into account the key signa-
ture.

The synthesis from MIDI files was performed using
timidity with the piano program of the default soundfont,
obtaining monoaural audio files at 16kHz. Then, mag-
nitude spectrograms were calculated using a 64ms (1024
samples) Hamming window with a 16ms hop (256 sam-
ples). All incipits were synthesized using random tempo
values in the range [96-144] bpm in order to make the net-
work work with different speeds.

3. FRAMEWORK

We describe in this section the neural model that allows
us to face the AMT task directly from an audio signal to a
sequence of meaningful symbols.

2 https://github.com/cemfi/meico
3 http://www.verovio.org/index.xhtml
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Class Symbol Count Histogram
Global Blank 1,526,051
Clef G2 39,337

F4 4,414
C1 22,468
C3 1,981
C4 3,200

Key D[M 112
A[M 1,065
E[M 6,815
B[M 8,950
FM 11,599
CM 15,488
GM 10,309
DM 10,861
AM 4,933
EM 1,216
BM 52

Pitch A 87,323
B 88,004
C 95,190
D 100,014
E 80,780
F 75,579
G 84,953
[ 70,557
] 55,471
Rest 89,635

Octave 2 2,937
3 44,170
4 274,590
5 284,081
6 6,065

Duration ¯ 8,686
˘ “ 52,541
ˇ “ 172,933
ˇ “( 226,395
ˇ “) 72,124

ˇ “* 6,711

‰ 72,453
Tie 10,393

Time 4/4 27,855
2/2 13,848
3/4 11,595
2/4 7,569
6/8 4,950
3/8 2,916
3/2 1,199
12/8 592
6/4 417
4/2 305
9/8 154
Barline 245,239

Table 1: Symbols of the alphabet Σ. Notes are encoded
using words of three to five symbols (for example, C]4 ˇ “‰ ).

$ q c F]4 ˇ “( . G4 ˇ “) | A4 ˇ “ a4 ˇ “( . A4 ˇ “) A4 ˇ “( D5 ˇ “( C]5 ˇ “( B4 ˇ “( | A4 ˇ “ A4 ˇ “) B4 ˇ “) A4 ˇ “) G4 ˇ “) F]4 ˇ “. A4 ˇ “( | G4 ˇ “( . F]4 ˇ “) G4 ˇ “( A4 ˇ “( F]4 ˇ “( . E4 ˇ “) F]4 ˇ “( G4 ˇ “(
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Figure 2: Example of a magnitude spectrogram (x) syn-
thesized from a RISM incipit (center). The symbolic en-
coding representation used for the CRNN (y) is shown be-
low, where the character ‘$’ is the G2 clef, ‘q’ is the key
signature DM, the symbol ‘c’ is used to encode 4/4 and
‘|’ represents the barline. Similarly to speech recognition,
words are separated by blank spaces.

Formally, let X = {(x1, y1), (x2, y2), ...} be our end-
to-end application domain, where xi is an audio recording
represented by its magnitude spectrogram, and yi denotes
its corresponding ground-truth sequence from a fixed al-
phabet set Σ.

The problem of AMT can be reformulated as retriev-
ing the most likely sequence of symbols ŷ given an input
spectrogram x. That is:

ŷ = arg max
y∈Σ∗

P (y|x) (1)

We formulate this statistical framework by means of Re-
current Neural Networks (RNN), as they allow handling
sequences [12]. Ultimately, therefore, the RNN will be re-
sponsible of producing the sequence of musical symbols
that fulfills Eq. 1. Nevertheless, on top of it, we add a Con-
volutional Neural Network (CNN), which learns how to
process the input signal to represent it in a meaningful way
for the task at issue [36]. Since both types of networks
consist of feed-forward operations, the training stage can
be carried out jointly by simply connecting the output of
the last layer of the CNN with the input of the first layer of
the RNN, which leads to a Convolutional Recurrent Neu-
ral Network (CRNN). A similar topology was previously
applied to drum transcription in [33], although not in an
end-to-end fashion.

Our work is conducted over a supervised learning sce-
nario. Therefore, it is assumed that we can make use of
a set T ⊂ X with which to train the model. Initially, the
traditional training mechanism for a CRNN needs to be
provided with the expected output for each frame of the in-
put. As introduced above, for each recording the training
set only contains its corresponding sequence of expected
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symbols, without any kind of explicit information about
their location within the input signal. This scenario can be
solved by means of the so-called Connectionist Temporal
Classification (CTC) loss function [13].

Given an input x, CTC provides a means to optimize the
CRNN parameters in order to directly output its correct se-
quence y. In other works, CTC directly optimizes P (y|x).
Since the ground-truth is not aligned at the frame level,
that is, it is unknown the alignment between the frames of
the recurrent part and the output symbols, CTC integrates
over all possible alignments. It only considers monotonic
alignments (left-to-right constraint), which is a valid as-
sumption in our task.

Although optimizing the aforementioned probability
is computationally expensive, CTC performs a local op-
timization using an Expectation-Maximization algorithm
similar to that used for training Hidden Markov Models
[24]. However, given that CTC integrates over all possible
alignments, its main limitation is that the cost of the op-
timization procedure grows rapidly with the length of the
sequences.

Note that CTC is used only for training. At the in-
ference stage, the CRNN still predicts a symbol for each
frame of the recurrent block. To indicate a separation be-
tween symbols, or to handle those frames in which there
is no symbol, CTC considers an additional symbol in the
alphabet that indicates this situation (blank symbol).

3.1 Implementation details

Finding the best instantiation of a CRNN for the case of
AMT is out of the scope of this work, but we are inspired
by the Deep Speech 2 [8] topology, which was especially
designed for the task of Automatic Speech Recognition
(ASR). Although ASR and AMT are different tasks they
are related, and so the use of this architecture allows us to
obtain valuable results without having to make an exhaus-
tive search of the best neural topology.

Nonetheless, we made small modifications to the orig-
inal architecture in order to adjust its behavior to AMT.
The specification of our neural topology is detailed in
Table 2. It consists of 2 convolutional layers and 3 recur-
rent layers. Convolutional layers are composed of convo-
lutional filters followed by Batch Normalization [16], and
the non-linear hard hyperbolic tangent (HardTanh) activa-
tion function [14]. Furthermore, bi-directional recurrent
layers are configured as Gated Recurrent Units (GRU) [7],
with Batch Normalization as well. On top of the last recur-
rent output, a fully-connected layer is placed with as many
neurons as symbols of the vocabulary (plus 1, because of
the blank symbol). The use of the softmax activation al-
lows us to interpret the output of this last layer as a poste-
rior probability over the vocabulary [6].

The training stage is carried out by providing pairs of
spectrograms with their corresponding unaligned sequence
of musical symbols. The optimization procedure follows
stochastic gradient descent (SGD) [5] with Nesterov mo-
mentum of 0.9, gradient L2 Norm clipping of 400, and a
mini-batch size of 20 samples, which modifies the network

Input(1024× T )

Convolutional block
Conv(32, 41× 11, 2× 2), BatchNorm(), HardTanh()
Conv(32, 21× 11, 2× 1), BatchNorm(), HardTanh()

Recurrent block
B-GRU(1024), BatchNorm()
B-GRU(1024), BatchNorm()
B-GRU(1024), BatchNorm()
Dense(|Σ|+ 1), Softmax()

Table 2: Instantiation of the CRNN used in this work for
audio-to-score AMT, consisting of 2 convolutional layers
and 3 recurrent layers. Notation: Input(h × w) means an
input spectrogram of height h and width w; Conv(n, kh ×
kw, sh × sw) denotes a convolution operator of n filters,
kernel size of kh×kw, and stride of sh×sw; BatchNorm()
denotes a batch normalization procedure; HardTanh() rep-
resents the hard hyperbolic tangent activation; B-GRU(n)
means a bi-directional Gated Recurrent Units of n neurons;
Dense(n) denotes a fully-connected layer of n neurons;
and Softmax() represents the softmax activation function.
Σ denotes the character-wise alphabet considered.

weights to minimize the CTC loss function through back-
propagation. The learning rate was initially set to 0.0003,
but it was annealed by a factor of 1.1 after each epoch to fa-
vor convergence. The model was trained during 20 epochs,
fixing the weights according to the best result over the val-
idation set.

Once the CRNN is trained with the previous procedure,
it can be used to output a discrete symbol sequence from a
given spectrogram. The model yields character-level pre-
dictions in each frame. In order to provide an actual sym-
bol sequence, it is necessary to both collapse repeating
characters and discarding blank characters. Since there
could be several frame-level sequences that result in the
same sequence of musical symbols, the final decoding is
conducted by a beam search procedure [37], with a beam
width set to 10.

4. EXPERIMENTS

4.1 Setup

The proposed framework is evaluated using the corpus de-
scribed in Section 2.1.

Experiments are performed dividing the available data
into three independent partitions: 49, 980 samples (118.03
hours) for training, 10, 710 samples (25.34 hours) for val-
idation, and 10, 710 samples (25.36 hours) for the test set,
which is used to evaluate the actual performance.

Given the differences with existing AMT approaches,
our results are not directly comparable with any previous
work. Likewise, there are no standard evaluation metrics
with which to evaluate this framework.

Here, we propose a series of metrics especially consid-
ered for evaluating the presented approach. In particular,
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we are inspired by other tasks, like ASR or Optical Charac-
ter Recognition (OCR), that are also formulated expecting
a sequence of symbols as output. Analogously to these
tasks, we also assume that the output consists of individual
characters (pitches, durations, alterations, ...) that build
complete words (such as notes). Therefore, the perfor-
mance can be evaluated in terms of Character Error Rate
(CER) and Word Error Rate (WER). These metrics are de-
fined as the number of elementary editing operations (in-
sertion, deletion, or substitution) to convert the hypotheses
of the system into the ground-truth sequences, at the char-
acter and word level, respectively. They compute this cost
in a normalized way according to the length of the ground-
truth sequences. Even assuming that these metrics are not
optimal for the task of AMT, we hope that they allow us
to validate the approach and draw reasonable conclusions
from our experimental results.

In order to get some baseline results that can be com-
pared to other works, we also applied the evaluation me-
tric used in [19] for piano-roll alignment tasks. The total
number of notes in the ground truth is denoted by NGT ,
that of estimated notes by Nest. The number of notes with
pitch errors is denoted by Np, that of extra notes by Ne,
and that of missing notes by Nm. The number of matched
notes is defined as Nmatch = NGT − Nm = Nest − Ne.
Then we define the pitch error rate as Ep = Np/NGT , ex-
tra note rate as Ee = Ne/Nest, and missing note rate as
Em = Nm/NGT . Onset/offsets errors are also reported
in [19]. As we are dealing with note durations instead of
onsets/offsets, we include an alternative error metric Ed

which is calculated similarly to the pitch error Ep but us-
ing note duration errors, denoted by Nd. Thus, we define
the duration error rate as Ed = Nd/NGT .

4.2 Results

Figure 3 shows the evolution of the errors during the train-
ing process. As can be seen, the convergence is fast and
the best results on the validation set are obtained at epoch
18, reporting a CER of 5.53 and a WER of 15.98. In the
test set, a CER of 5.36 and a WER of 15.67 are obtained.
These results are very similar to those from the validation
set, thus proving that there is no over-fitting and the model
generalizes well.

After an in-depth analysis of the test set transcriptions
obtained, we observed that the majority of errors are due
to wrong time signatures, barline locations, and clefs. This
result was expected in our prior analysis, as even for a hu-
man it would be difficult to identify them based on the
short audio excerpts we provide to our model (the average
number of music measures of the audio excerpts is 4.4).
Furthermore, there are some time signatures that contain
the same number of notes per measure and therefore they
require more musical context to identify them correctly
(e.g. 4/4 and 2/2 time signatures), as shown in Figure 4.
In other cases, one of these specific errors causes the ap-
pearance of many others, as seem to happen with the time
signature in the example of Figure 5. In order to address
these ambiguities, normalization techniques could be em-

Figure 3: Evolution curves of the CTC loss, CER, and
WER over the validation set with respect to the training
epoch. The lowest WER (15.98) and CER (5.53) figures
are obtained at epoch 18.

(a) Original score.

(b) Transcribed score.

Figure 4: Example of transcription performance. Note that
the two mistakes made (clef and time signature) belong to
music notation ambiguities.

ployed (for instance, changing all 2/2 by their equivalent
notation in 4/4).

In spite of all these difficulties, some samples are per-
fectly recognized, as the one depicted in Figure 6.

We provide the results of the evaluation metric proposed
in [19] for estimated notes, and for estimated notes and
rests combined (in this case, Ep does not change). As
can be seen in Table 3, the error rates are quite low com-
pared to [19], but this is due to the fact that our audio files
are monophonic and synthesized. In addition, most tran-
scription errors are due to wrong estimations of time sig-
natures, subsequently yielding wrong barline locations as
previously explained.

5. CONCLUSIONS

In this work, we propose a new formulation of AMT in the
form of an audio-to-score task. In summary, the advan-
tages of this formulation over piano-roll estimation are:
1) it is not required to have a frame-by-frame annotation
aligned with the audio, therefore potentially more data

Table 3: Note pitch error rate (Ep), missing symbol rate
(Em), extra symbol rate (Ee) and symbol duration error
rate (Ed) considering only notes and notes plus rests.

Ep Em Ee Ed

Notes 0.99% 2.63% 1.81% 0.71%
Notes+Rests 0.99% 4.94% 2.51% 1.23%
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(a) Original score.

(b) Transcribed score.

Figure 5: Example of a transcription with several mis-
takes. Here, the unusual time signature 3/2 (wrongly de-
tected) propagates the errors to the notes.

Figure 6: Example of a correctly transcribed score.

could be acquired for training; 2) the obtained outputs are
musically meaningful; 3) the frame-by-frame annotation
ambiguities are avoided, although on the other hand there
are music notation ambiguities to deal with; 4) the task
is addressed holistically instead of using a pipeline of in-
dividual processes, avoiding the cascading of errors when
they are combined sequentially, and 5) musical models are
implicitly inferred as it occurs with language models in
speech recognition.

We validated the proposed framework using a CRNN
with a CTC loss function trained on RISM incipits, cor-
rectly predicting around 84% of symbols for monophonic
scores synthesized with a piano sound at different tempos.
It is important to note that some symbols such as barlines,
rests, ties, time signatures or key signatures were no ex-
plicitly present in spectrograms but they were correctly in-
ferred from the context.

A qualitative analysis of the performance reported that
many errors occurred because of music notation ambigui-
ties. Although they decreased the WER and CER figures,
”wrong” outputs are musically correct and equivalent to
the ground-truth scores in most cases.

As a future work, we are planning first to extend it for
polyphonic sources, and also to perform instrument recog-
nition. In order to deal with polyphony, a chord could be
considered as a “word” containing “syllabus” (the individ-
ual notes), for example: C4 ˘ “E4 ˘ “G4 ˘ “ . An additional sym-
bol could be added to indicate the instrument (for example,
PC4 ˇ “ could represent a quarter note of pitch C4 played on
Piano).

As pointed out in [18], previous experiments on deep
neural networks dealing with framewise multiple pitch de-
tection showed that unseen combinations are hard to de-
tect. A partial solution to this problem might involve a
modification of the loss function for the network to disen-
tangle individual notes explicitly and learn to decompose
a (nonlinear) mixture of signals into its constituent parts.
We believe that, unlike what happens in this framewise de-
tection, CTC loss may be able to break the observed glass-
ceiling, given that ASR methods using this architecture are
capable of generalizing to detect unseen words from its
constituent (character) elements. Nonetheless, additional
experiments on AMT should confirm this hypothesis.

Synthesized scores were used to perform the experi-
ments, although ideally real data should be evaluated. For
this, we are planning to use datasets such as Lakh [25],
which contains audio files with their corresponding MIDIs.
Given the computational cost of CTC, the proposed frame-
work needs to use short segments. Therefore, it is neces-
sary to have aligned barlines to split both the audio and the
corresponding score ground truth into smaller pieces. This
could be done using a score following method [9,22]. This
preprocessing could introduce some errors due to wrong
alignments, but there is a more suitable alternative: to
train the CRNN using full scores along with their complete
real audio files, which is the ultimate goal of the proposed
framework. This is possible and could be done by con-
sidering the recently proposed online CTC [15] function,
which efficiently adapts to any sequence length.

Another obvious future work is to find a more ade-
quate network architecture and evaluate alternative hyper-
parameters to increase the accuracy. CNN and RNN
topologies evaluated in previous AMT works [17, 27]
should be investigated for this task.

In conclusion, in this work we show that it is feasible
to perform end-to-end transcription from monophonic au-
dio files to scores. We are fully aware that experiments
were made in a very controlled and simplified environ-
ment and there is still much work to do in order to per-
form a complete transcription. But we believe that the pro-
posed framework opens a new exciting research area given
the huge amount of data that could potentially be used for
training, and its practical utility for musicians who could
obtain directly a score from audio.
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[26] RISM. Répertoire International des Sources Musicales,
2017.

[27] S. Sigtia, E. Benetos, and S. Dixon. An End-to-end
Neural Network for polyphonic piano music transcrip-
tion. IEEE Transactions on Audio, Speech and Lan-
guage Processing, 24(5):927–939, 2016.

[28] P. Smaragdis and J. C. Brown. Non-negative Matrix
Factorization for Polyphonic Music Transcription. In
IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, pages 177–180, 2003.

[29] J. Thickstun, Z. Harchaoui, and S. Kakade. Learning
features of music from scratch. In International Con-
ference on Learning Representations (ICLR), 2017.

40 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



[30] J. Thickstun, Z. Harchaoui, D. Foster, and S. M.
Kakade. Invariances and data augmentation for
supervised music transcription. arXiv preprint
arXiv:1711.04845, 2017.

[31] R. Typke, M. Den Hoed, J. De Nooijer, F. Wiering,
and R. C. Veltkamp. A ground truth for half a million
musical incipits. Journal of Digital Information Man-
agement, pages 34–39, 2005.

[32] J. J. Valero-Mas, E. Benetos, and J. M. Iñesta. A super-
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