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ABSTRACT

An important problem in the live music industry is find-
ing venues that help expose artists to wider audiences.
However, it is often difficult to obtain live music audi-
ence data to tackle this task. In this work, we investigate
whether important venues can instead be inferred through
social media data. Our approach consists of employing
bipartite graph ranking algorithms to help discover impor-
tant venues in artist-venue graphs mined from Facebook.
We use both well-established algorithms, such as BiRank,
and a modification of their common iterative scheme that
avoids the impact of possibly erroneous heuristics to the
ranking, which we call VenueRank. Resulting venue ranks
are compared to those obtained from feature extraction for
predicting the most listened artists and large listener incre-
ments in Spotify. This comparison yields high correlation
between venue importance for listener prediction and bi-
partite graph ranking algorithms, with VenueRank found
more robust against overfitting.

1. INTRODUCTION

In the music industry, artists aim to present themselves to
wide audiences. Therefore, it is important for them to gain
as much exposure as possible from their live performances.
In turn, this exposure can influence their popularity, as ex-
pressed by the size of their audience.

In this paper we try to identify which performances of-
fer higher exposure. Factors such as timing and other re-
cent events can influence this. Listener geolocation has
also been found to contribute to artist popularity predic-
tion [3, 21]. Consequently, it is reasonable to hypothesize
that performing in certain venues could contribute more
to artist popularity. Having access to a ranking of venues
based on expected exposure could be valuable for artists
and their agents; when confronted with different options
regarding their future performances, they could consider
these rankings as an important decision criterion.

c© Emmanouil Krasanakis, Emmanouil Schinas, Symeon
Papadopoulos, Yiannis Kompatsiaris, Pericles Mitkas. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Emmanouil Krasanakis, Emmanouil Schinas, Symeon Pa-
padopoulos, Yiannis Kompatsiaris, Pericles Mitkas. “VenueRank: Iden-
tifying Venues that Contribute to Artist Popularity”, 19th International
Society for Music Information Retrieval Conference, Paris, France, 2018.

To rank venue exposure, one could try to predict it using
machine learning algorithms. Unfortunately, there are dif-
ficulties in quantifying the notion of exposure, not least of
which is that real-life data may misrepresent audience size
and reactions. For example, participating in a large event
held in a well-known venue with many other artists may
contribute less to gaining popularity compared to an artist-
focused event. A viable alternative to measuring venue ex-
posure, which we also adopt in this work, is to instead es-
timate whether venues contribute to artist popularity (e.g.
the number of listeners in music services) from a machine
learning perspective. To do so, we can employ feature ex-
traction methods to identify the most important venues that
help determine and increase artist popularity.

However, even this formulation depends on obtaining
live music audience data required for supervised training.
Such data are not necessarily easy to obtain, as they are
typically considered confidential. Therefore, in this work
we attempt inferring important venues through unsuper-
vised training, which does not require such data.

In particular, given a graph representation, where artists
are linked with venues they have performed in, we use
graph ranking algorithms to rank venues. To validate
whether this approach ranks venues based on offered ex-
posure, we compare the produced ranks with venue impor-
tances obtained through feature extraction for predicting
popular artists and artist popularity increments. We find
that ranking methods can be more informative than raw
social media measures in predicting important venues.

2. BIPARTITE GRAPH RANKING

2.1 Motivation for Graph Ranking

We can organize data pertaining to artists A and venues V
where they have performed as bipartite graphs, i.e. graphs
in which vertices form two disjoint sets linking only to
each other. To analyze the importance of venues based
on the structure of such artist-venue graphs, we employ
ranking algorithms, which are used to determine the rel-
ative importance of nodes given a graph’s structure [17].
These algorithms often operate under the premise that
nodes linked to a higher number of important nodes are
also more important.

Formulations such as HITS [14] further refine this con-
cept by recognizing that there can be two types of impor-
tant nodes; authorities that provide important information
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and hubs that point to a lot of information sources. A
node’s authority is then derived from its predecessors’ hub
scores and its hub score is derived from its successors’ au-
thority scores, forming an iterative process.

The distinction between authorities and hubs is of great
interest when applied on bipartite graphs, especially if the
links between disjoint set elements represent the same type
of relation. In this case, we can formulate that one of those
sets contains only authorities and the other only hubs.

For example, in our artist-venue graph setting, where
venues always represent locations where artists have per-
formed, artists can be considered as authorities and venues
as hubs from which popularity-related authority stems. In-
tuitively, this means that artists are considered more im-
portant if they have performed in more important venues,
whereas venues are considered more important if more im-
portant artists have performed there.

2.2 Ranking based on Prior Ranks

Formally, bipartite graph ranking algorithms attempt to
rank nodes in a graph defined by a (weighted) adjacency
matrix W : V ×A between the disjoint groupsA,V based
on heuristically estimated prior ranks.

Prior ranks 1 are supported by most graph ranking algo-
rithms and are used to introduce ranking bias that is driven
by information unrelated to graph structure. For exam-
ple, in web searches [17] prior ranks place more weight
on the pages more similar to the search query. In bipar-
tite graphs, prior ranks often represent an informed belief
about ranks and help attract the solution towards conver-
gence. However their usage can reduce the robustness of
extracted structural characteristics (see Subsection 2.3).

As demonstrated by He et al. [12], previous bipartite
graph ranking algorithms follow similar formulations. In
particular, if S and S′ are normalizations of W and its
transposition WT respectively, a0, v0 are prior ranks that
initially estimate node ranks for the two bipartite graph
groups and ra, rv are prior rank elimination parameters,
approaches follow a common recursive rule for calculating
bipartite graph group ranks as recursions n→∞:

an+1 = (1− ra)a0 + raS
′vn (1a)

vn+1 = (1− rv)v0 + rbSan (1b)

In practice, this iterative process stops when rank differ-
ences converge to a stable set of values. In this work, we
empirically adopt a simple stopping criterion across algo-
rithms that stops after rank changes become small enough:

‖an+1 − an‖22 + ‖vn+1 − vn‖22 < 0.1 (2)

Differences between bipartite graph ranking algorithms
lie in the way normalization is performed on the adjacency
matrix and its transposition. If DA, DV are two diagonal
matrices containing the node degrees of the disjoint sets
A,V , those algorithms perform normalization as:

S = D−pv
v WD−pa

a (3a)

S′ = D−pv
a WTD−pa

v (3b)

1 Prior ranks have also been referred to as ‘query vectors’ [12].

where pa, pv are non-negative constants specific to each al-
gorithm (see Table 1). These constants determine whether
degree normalization should be performed row-wise or
column-wise or whether the normalization should produce
a stochastic matrix.

Algorithm pa pv
HITS [14] 0 0
Co-HITS [6] 1 0
BGRM [19] 1 1
BGER [1] 0 1
BiRank [12] 1

2
1
2

Table 1: Different parameters between bipartite graph
ranking algorithms.

The advantage of the iterative scheme demonstrated in
Eqn (1) over more general ranking schemes, which do not
take the bipartite nature of the graph into account, is that
the former converges fast to unique stationary solutions, as
demonstrated below.
a) If ra, rv < 1 then substituting Eqn (1) into itself as n→
∞ yields:

a∞ = (I − rarvS
′S)−1[ra(1− rv)S

′v0 + (1− ra)a0]

v∞ = (I − rarvSS
′)−1[rv(1− ra)Sa0 + (1− rv)v0]

Although this solution can also help analytically derive
node ranks a∞, v∞, doing so can be computationally in-
tensive, since it requires matrix inversion. For that reason,
all previous approaches adopt the iterative scheme, which
is computationally efficient, especially when W is sparse.
b) If ra = rv = 1 then:

a∞ = S′v∞

v∞ = Sa∞
⇒

(S′S − I)a∞ = 0

(SS′ − I)v∞ = 0

Therefore, if S′S, SS′ are stochastic matrices, i.e. if
pa + pv = 1 in Eqn (3), their largest eigenvalue is 1
and thus a∞, v∞ are their principal eigenvectors respec-
tively. In this case, the iterative scheme resembles the
power method for calculating the principal eigenvectors.
However, due to absence of vector normalization after each
step, large enough ranks may grow uncontrollably and fail
to converge [16].

2.3 VenueRank

The above formulation of bipartite graph ranking algo-
rithms relies heavily on the correctness of the prior ranks
a0, v0 to produce accurate ranks. If the prior ranks are only
partially correct (e.g. are only sparsely filled) ranking al-
gorithms may converge to much different values. Further-
more, structure-related information could be more useful
for important venue detection than prior rank heuristics.
Hence, there exist cases where eliminating the effect of
prior ranks is desirable [15].

In such cases, the previous bipartite graph ranking algo-
rithms eliminate the prior ranks by selecting ra = rv = 1.
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However, as discussed above, numeric convergence is not
theoretically guaranteed for these parameters. For exam-
ple, BiRank fails to converge for these parameters when
run on data gathered in Subsection 3.1.

Therefore, we propose modifying the previous iterative
process to gradually remove the dependency on initial prior
ranks across iterations:

an+1 = (1− ra)an + raS
′vn (4a)

vn+1 = (1− rv)vn + rvSan (4b)

Similarly to before, as n → ∞ we obtain a∞ = S′v∞
and v∞ = Sa∞ and thus a∞, v∞ become the principal
eigenvectors of S′S and SS′ respectively, as long as the
latter are stochastic matrices.

This iterative process differs from previous ones in that
it stabilizes on these eigenvectors for any non-zero param-
eters ra, rv . As a result, we can retrieve theoretical guar-
antees [16] that there exist small enough ra, rv that make
it converge. Moreover, we can see that:

S′S = D−pv−pa
a WTD−pa−pv

v W

S′S = D−pa−pv
v WD−pv−pa

a WT

Therefore, for constant pa + pv = 1 the eigenvectors of
these two matrices remain the same and Eqn (4) converges
to the same ranks regardless of the type of normalization
defined by these two parameters.

In short, we have shown that, for the iterative scheme
demonstrated in Eqn (4), which we will call VenueRank,
it suffices to select any pa + pv = 1 and small enough
ra, rv to converge to bipartite graph ranks where the effect
of prior ranks is eliminated.

3. EXPERIMENTS

3.1 Data Collection

We collected two types of data for our experiments; data
from Facebook about artist and venue pages and the re-
spective number of listeners for those artists from Spotify.
We use Facebook data to run bipartite graph ranking al-
gorithms and Spotify data to extract the ground truth with
which to evaluate these algorithms.

We started with a collection of 542 artists, for which we
were granted access to their number of streams and listen-
ers in Spotify Analytics 2 from 1 January 2015 to 3 May
2019. We also used the Facebook Graph API 3 to automat-
ically find Facebook pages for those artists and manually
removed artists with erroneously matched pages. After this
step, the collection comprises 323 artists, for whom we can
retrieve both the monthly number of listeners in Spotify
and their Facebook page.

Next, we retrieved the events published in the discov-
ered Facebook pages dating later than 1 January 2014, as
well as the venues that hosted them. This process results
in a tripartite graph with nodes representing artists, events
and venues (see Figure 1).

2 https://analytics.spotify.com/
3 https://developers.facebook.com/docs/

graph-api/
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Figure 1: Artist (red) and venue (blue) pages in Facebook
alongside their associated events (yellow) of the largest
connected subgraph of the dataset that contains a Finnish
rock band called ‘The Rasmus’ (green).

This graph contains a total of 105, 251 events that took
place in 4, 051 venues across 72 timezones (see Figure 2).
Using the events in that graph as indicators of the appear-
ance of an artist in a venue, we infer a bipartite artist-venue
graph, which we use for our analysis. Artists associated
with a non-zero number of venues number 224 and they
are associated with a total of 2, 392 venues.

Figure 2: Timezones with more than 20 venues each.

Our dataset contains the number of Spotify listeners per
month for each artist. From these listeners we procure
artist popularity based on the total number of listeners for
each artist, as well as the increase of the number of artist
listeners for each month, which yields 8, 619 datapoints
across all artists. The number of total listeners spans a
wide range of magnitudes. Hence, denoting the number
of listeners for month m of an artist as Lm, we define:

popularity = log(1 +
∑

m Lm)
which yields the normal-like artist distribution shown in
Figure 3. We also quantify the relative increments of
monthly listeners as:

incm = min{Lm/Lm−1 − 1, 1} when Lm−1 6= 0
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Figure 3: Artist popularities (left) and the distribution of
relative listener increments (right).

3.2 Ground Truth Construction

It is difficult to directly extrapolate the exposure granted by
venues using only artist popularity and incm data. How-
ever, we can employ a feature extraction scheme to ob-
tain venue importances reflecting their contribution to pre-
dicting these quantities. Based on the systemic property
of graph ranking algorithms in Section 2.2, to rank based
on the nodes’ positions on the graph, we can then evalu-
ate the quality of those algorithms by measuring whether
higher ranked venues are actually more important for pre-
diction. Effectively, this would assert that higher ranks
represent higher exposure. This way, venue importances
extracted from machine learning on Spotify data can be
used as ground truth against which to validate ranking al-
gorithms, which do not utilize such data.

The machine learning setting for feature extraction can
be either a regression or a classification task (popular-vs-
unpopular). Here, we focus on the latter, since the classifi-
cation task leads to clearer separation between venues that
lead to each of the two target classes. Indeed, regression
tasks using only venues to predict popularity and incm
values yield high error rates, whereas the binary classifiers
demonstrated below boast high predictive capabilities.

Labeling and Feature Selection
To set up the venue ranking task, we distinguish high
popularity and incm values by performing outlier detec-
tion [13] and considering outliers residing in the 20% right
tail of their distributions 4 as popular and high increment
ones respectively. We then use methods that perform ro-
bust feature extraction [10] based on these labels.

To do so, we consider venues as binary artist features to
predict popularity, whereas we use exponential decay to
model the decreasing influence [9] on incm of performing
in a venue held at month mv as exp

(
− m−mv

2

)
if mv ≤ m

and 0 otherwise. Using these feature values, the feature
extraction mechanism then identifies which features (i.e.
venues) contribute the most to label prediction (i.e. high
artist popularity and high listener increments).

Unfortunately, outliers represent a small fraction of all
datapoints and hence cause imbalance between label pri-
ors. Imbalance often affects classification validity and can
distort or bias estimated feature importances. To alleviate
such concerns, we employ SMOTE oversampling [2] to
generate synthetic popular artist profiles, so that the num-
ber of popular artists becomes equal to the number of un-

4 To obtain the outliers residing in the right 20% distribution tail, we
use the z-score detection threshold 0.84 for those greater than the median.

popular ones. We prefer an oversampling scheme, because
the small number of collected artists prohibits an under-
sampling one. This process is summarized in Figure 4.

Figure 4: Extracting venue importances.

Classifier
We use the random forest classifier of the sklearn Python
package [18] with an entropy feature selection crite-
rion. Compared to other classification algorithms, random
forests calculate feature importances during the training
process and do not require tuning. On the other hand,
they can produce lower importances for cross-correlated
features. To improve the robustness of such features,
we instead deploy an ensemble of random forests [20],
which averages importance scores obtained from 10 ran-
dom forests. To avoid erroneously overstating the impor-
tance of unique venue appearances, we train these ensem-
bles and produce importances only for venues in our data
where at least 2 artists have performed, which number 602.

Validation
To assert the validity of feature importances assigned by
random forest ensembles, we performed leave-one-out
cross-validation on trained random forests across 13 train-
ing repetitions. For predicting high popularity labels we
obtained 9% false positive error rate (i.e. rate of assign-
ing unpopular artists as popular) and 7% false negative er-
ror rate (i.e. rate of assigning popular artists as unpopu-
lar), whereas for predicting high incm labels we obtained
29% false positive error rate and 33% false negative error
rate. Since error rates reflect informed classification, venue
importances obtained through this process can indeed be
considered as the ground truth for subsequent experiments.
These error rates indicate that popularity importances are
more accurate, although from a methodological standpoint
causation is better explored by incm importances.

3.3 Compared Ranking Algorithms

In this section, we explore the performance of unsuper-
vised ranking algorithms (such as those presented in Sec-
tion 2) that aim to rank venues using only Facebook data.
These algorithms require prior rank estimations, which
we heuristically infer through metadata obtained from the
Facebook Graph API. In particular, we estimate artist and
venue prior ranks respectively as:

a0 = log(1 + fans+mentions/2)

b0 = |events in venues|
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We alternatively tried calculating venue prior ranks by
summing of the size of all events hosted in a venue, heuris-
tically estimated by size = max{0, log(1 + attending +
interested/2 + maybe/2 − noReply/2 − declined)}.
However, this reduced all BiRank evaluations more than
30% compared to their currently reported values. We com-
pare the following algorithms:

Raw: Estimates venue ranks as their prior ranks.

RFE: Feature extraction using random forest ensembles,
similarly to ground truth construction, but aiming to pre-
dict high artist prior ranks.

BiRank: BiRank on the artist-venue bipartite graph ex-
tracted from Facebook data. Unless stated otherwise, this
method uses parameters ra = rv = 0.85, which are a com-
mon empirical selection for ranking algorithms [8, 12].

VenueRank: VenueRank on the artist-venue bipartite
graph extracted from Facebook data. As argued above,
VenueRank eventually removes the effect of prior ranks.
Although inconsequential from a theoretical standpoint,
we follow previous conventions and reasoning well-
established for BiRank [12], to select the parameters ra =
rv = 0.85 and pa = pv = 0.5, unless stated otherwise.

Evaluation Measures
To evaluate bipartite venue ranking algorithms, we com-
pare the ranks they produce when applied on Facebook
data with the ground truth importances extracted from Spo-
tify data in Subsection 3.2. Our aim is to find whether
venues are correctly ranked by unsupervised ranking al-
gorithms. To this end, we measure rank similarities using
the robust Spearman correlation coefficient [5], which is
is computed as a Pearson correlation between the cardinal
ranks of compared quantities. It must be noted that, due to
the possibility of negative exposures being found more im-
portant, the supremum of Spearman correlation can be less
than 1. This, however, does not affect the fact that Spear-
man correlations closer to 1 indicate that higher ranked
venues are more important and thus boast higher exposure.

Additionally, if ranksGT lists venues in a descending
order of their ground truth importances and ranksC in de-
scending order of their calculated ranks, we can define the
overlap between the top N venues:

overlap(N) =

∣∣ranksGT [0 : N ] ∩ ranksC [0 : N |
∣∣

N

To evaluate the overall overlap curves across all venues,
we also measure their Area Under Curve (AUC) [11],
which is a fair method of curve comparison. To calcu-
late this area, we perform numerical trapezoid integration
of overlaps and normalize the result by dividing it with
the width of the horizontal axis. Higher AUC values rep-
resent better ability to recognize both high-exposure and
low-exposure venues.

3.4 Results

Experiments are performed under two variants of unsuper-
vised training on Facebook data: venue ranking on the

same 224 artists (224A) (including venues with only one
performance) as those used for ground truth construction
and venue ranking using all 542 artists (542A) and their
respective venues. Since the latter dataset contains more
artists and venues, it presents a more challenging setting.
Using both variants for evaluation helps identify which al-
gorithms generalize better and are more robust.

In Table 2, we can see that BiRank and VenueRank
achieve high correlation values with the ground truth in
the 224A dataset. However, BiRank heavily relies on ac-
curate prior ranks to do so and does not perform well in the
larger 542A dataset, where it produces worse estimations
compared to even its prior ranks. This implies that BiRank
exhibits overfitting characteristics. On the other hand, both
RFE and VenueRank boast great robustness in that they are
less affected by the transition to the larger 542A dataset.
Consequently, VenueRank exhibits high performance and
is more suited to real-world applications, since it is more
robust to artist-venue graph changes.

Since there exist -to the best of our knowledge- no
previous studies that can serve as comparison for venue
correlations, common guidelines [7] suggest that we can
resort to the Cohen convention [4] to classify extracted
venue ranks as strongly correlated between VenueRank
and ground truth importances across all experiments.

popularity incm
Algorithm 224A 542A 224A 542A
Raw 36% 38% 44% 42%
BiRank 70% 33% 76% 28%
RFE 57% 51% 64% 49%
VenueRank 71% 63% 69% 60%

Table 2: Spearman correlation coefficient between ground
truth venue rankings and rankings produced by algorithms.

Feature importances forming the popularity and incm
ground truths are themselves significantly correlated, with
58% Spearman correlation coefficient. This indicates that
venues characterizing popular artists also tend to charac-
terize higher listener increments and conversely.

Figure 5 shows the overlap between various algorithms
and the ground truth for different numbers of top venues.
We can see that, for a small number of top venues (i.e. less
than 200), ranking methods do not produce high overlap
with ground truth venues. However, for a greater number
of venues, they rank highly a large portion of important
venues. A curve over a larger area is more important than
only identifying top venues, because ranking methods may
be used to compare middle-ranked or low-ranked venues
to the majority of artists instead of only the most popular
ones. AUC results corroborate the previous ones. In par-
ticular, BiRank again performs better than other methods
under perfect information, whereas VenueRank performs
better than other methods and is thus more robust in the
case of the more challenging 542A dataset variant.
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(a) 224A for popularity (b) 542A for popularity

(c) 224A for incm (d) 542A for incm

Figure 5: Curves and AUCs of high-ranked venue overlap
between ranking algorithms and the ground truth.

3.5 Convergence when Ignoring Prior Ranks

In Figure 6 we present the convergence time of BiRank
with respect to its iterative scheme parameters ra, rb. We
can see that execution time increases asymptotically to in-
finity as prior ranks are ignored, i.e. ra = rb → 1. Instead,
VenueRank exhibits similar behavior for these parameters
convergence-wise, and it always converges to the same sta-
tionary solution, as long as these parameters are not close
enough to 1 to cause numeric errors. Furthermore, that so-
lution is the same as BiRank when the effect of the prior
ranks is completely eliminated. Hence, when the effect
of prior ranks is undesireable, it is preferable to employ
VenueRank instead of selecting BiRank parameters close
to 1, if we want to achieve faster convergence.

Figure 6: Convergence time of BiRank (green solid line)
and VenueRank (dashed black line). VenueRank always
has the stationary solution of BiRank with ra = rb → 1.

3.6 Case Study

Finally, we conduct a case study, where we try to find im-
portant venues in the city of Stockholm, Sweden through
venue ranking algorithms. To this end, we used two online

articles 5 , 6 to gather a total of 10 highly recommended
venues and find their rankings obtained from running the
previous algorithms on all 542 artists and 5, 041 venues.
In Table 3 we show their rank within the ordered list of all
635 Stockholm venues in our dataset (rank of the highest-
ranked venue is 1).

VenueRank places 8 of the 10 venues in the top 50
ranks, whereas other methods place at most 5 of the 10
venues in the top 50 ranks. VenueRank’s performance is
commendable, given that our dataset also includes popu-
lar parks and hotels often used for live music acts, which
would not be recommended in the above articles, and that
worse ranks often stem from incomplete data (e.g. the
dataset contains only two events hosted in ‘Nalen’).

Raw RFE BiRank VenueRank
Annexet 95 105 147 40
Berwaldhallen 48 94 96 46
Cirkus 67 61 193 23
Debaser Medis 9 29 9 11
Debaser Rest. 3 8 4 1
Fasching 55 50 125 33
Nalen 195 97 172 113
Pet Sounds Bar 81 19 343 49
Sodra Teatern 39 1 24 2
Stallet 11 63 13 68

Table 3: Rank cardinality for recommended venues com-
pared to other Stockholm venues.

4. CONCLUSIONS AND FUTURE WORK

In this work, we introduce VenueRank as a modification
of the common iterative scheme of bipartite graph ranking
algorithms that removes dependence on prior ranks while
ensuring convergence. We then explore ranking algorithms
that help identify which venues help predict artist popular-
ity. Experiments on real-life data show that VenueRank ap-
plied on a Facebook artist-venue graph can robustly iden-
tify which venues are correlated with more popular artists
and actively contribute to increasing their Spotify listeners.
In particular, in a setting with partially inaccurate informa-
tion, VenueRank yields substantial improvement compared
to other unsupervised ranking algorithms.

In part, this shows that graph structure can be more im-
portant than rough social network metrics when predicting
high-exposure venues. Furthermore, it demonstrates that
there exists a clear link between graph structure and venue
exposure that increases artist popularity.

In the future, we plan to carry out more detailed exper-
iments on larger datasets. Furthermore, from a theoretical
perspective, the VenueRank iterative scheme can also be
combined with BiRank to produce more robust solutions
across the whole parameter space. Finally, we propose im-
proving venues ranks by taking into account how they con-
tribute to the exposure of lower popularity artists.

5 https://theculturetrip.com/europe/sweden/articles/
the-6-best-live-music-venues-in-stockholm

6 https://scandinaviantraveler.com/en/places/
7-best-music-venues-in-stockholm

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 707



5. ACKNOWLEDGEMENTS

The authors would like to thank Playground Music Scan-
dinavia for providing artist data. This work is partially
funded by the European Commission under the contract
number H2020-761634 FuturePulse.

6. REFERENCES

[1] Lei Cao, Jiafeng Guo, and Xueqi Cheng. Bipartite
graph based entity ranking for related entity finding.
In Proceedings of the 2011 IEEE/WIC/ACM Interna-
tional Conferences on Web Intelligence and Intelligent
Agent Technology-Volume 01, pages 130–137. IEEE
Computer Society, 2011.

[2] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. Smote: synthetic minority
over-sampling technique. Journal of artificial intelli-
gence research, 16:321–357, 2002.

[3] Zhiyong Cheng and Jialie Shen. Just-for-me: An adap-
tive personalization system for location-aware social
music recommendation. In Proceedings of interna-
tional conference on multimedia retrieval, page 185.
ACM, 2014.

[4] Jacob Cohen. Statistical power analysis for the behav-
ioral sciences 2nd edn, 1988.

[5] Christophe Croux and Catherine Dehon. Influence
functions of the spearman and kendall correlation mea-
sures. Statistical methods & applications, 19(4):497–
515, 2010.

[6] Hongbo Deng, Michael R Lyu, and Irwin King. A gen-
eralized co-hits algorithm and its application to bipar-
tite graphs. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 239–248. ACM, 2009.

[7] Joseph A Durlak. How to select, calculate, and in-
terpret effect sizes. Journal of pediatric psychology,
34(9):917–928, 2009.

[8] Nadav Eiron, Kevin S McCurley, and John A Tomlin.
Ranking the web frontier. In Proceedings of the 13th
international conference on World Wide Web, pages
309–318. ACM, 2004.

[9] Amit Goyal, Francesco Bonchi, and Laks VS Laksh-
manan. Learning influence probabilities in social net-
works. In Proceedings of the third ACM international
conference on Web search and data mining, pages 241–
250. ACM, 2010.

[10] Isabelle Guyon and André Elisseeff. An introduction
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