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ABSTRACT

The document analysis of music score images is a key step
in the development of successful Optical Music Recog-
nition systems. The current state of the art considers
the use of deep neural networks trained to classify ev-
ery pixel of the image according to the image layer it be-
longs to. This process, however, involves a high compu-
tational cost that prevents its use in interactive machine
learning scenarios. In this paper, we propose the use of
a set of deep selectional auto-encoders, implemented as
fully-convolutional networks, to perform image-to-image
categorizations. This strategy retains the advantages of us-
ing deep neural networks, which have demonstrated their
ability to perform this task, while dramatically increas-
ing the efficiency by processing a large number of pix-
els in a single step. The results of an experiment per-
formed with a set of high-resolution images taken from
Medieval manuscripts successfully validate this approach,
with a similar accuracy to that of the state of the art but with
a computational time orders of magnitude smaller, making
this approach appropriate for being used in interactive ap-
plications.

1. INTRODUCTION

The Optical Music Recognition (OMR) is a computational
process that reads musical notation from images, with the
aim of automatically exporting the content to a structured
format [1]. Given the complexity of the task, the process
is usually divided into different stages, the first of which
is the document analysis. This stage consists of detecting
and categorizing the different sources of information that
appear in images of musical scores—e.g., classifying each
pixel into one of four possible categories: background,
staff line, musical note, or lyrics—and it is important for
creating robust OMR systems [29]. That is, if subsequent
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stages receive the image in a reliable state, systems tend to
generalize more easily.

Many researchers have proposed different algorithms
to deal with specific steps within the document process-
ing stage of the Optical Music Recognition (OMR) work-
flow. Traditionally, these strategies consist of heuristic
workflows specifically designed for the scores at hand, ex-
ploiting specific details of the images to improve the per-
formance of the detection. Music documents, however, es-
pecially from the Medieval and Renaissance era, come in
a wide variety of notational styles and formats, resulting
in a heterogeneous collection. Therefore, the previous ap-
proaches may be beneficial in the short term but they do not
scale well [4, 6]. In many cases, a workflow must be de-
veloped anew for dealing with manuscripts with different
notation, from a disparate time period, or with a differing
level of image degradation.

Recent work has demonstrated the feasibility of using
machine learning for document analysis [21, 25, 36]. In
comparison to systems with hand-crafted heuristic rules,
the advantage of using machine learning-based techniques
lies in their generalizability, only needing labeled exam-
ples to build a new classification model [12]. In addition
to this important advantage, the use of these techniques,
in particular Convolutional Neural Networks (CNN), has
proven to outperform the traditional strategies considered
for document analysis in the OMR domain [6]. The main
idea behind this approach is training a CNN to distinguish
the category to which each pixel of the image belongs.
That is, given a pixel of the image, and taking into ac-
count the pixels of its neighborhood, a model is trained
to predict the category (e.g., note, staff line, and lyrics). In
this way, the document analysis process consists of classi-
fying every single pixel of the image into its actual cate-
gory, thus separating the different layers of the document
accordingly. Given that the classification is performed at
pixel level, thin elements such as staff lines, note stems, as
well as small artifacts, can be properly detected.

The problem with the aforementioned process is that it
entails a high computational cost because it needs to clas-
sify every single pixel of an image. Since OMR is a pro-
cess that lends itself to be used interactively [8, 9], there is
a need of accelerating the processing of documents with-
out sacrificing the classification quality, in order to present
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a user-friendly environment.
We present in this paper a new framework based on ma-

chine learning that replaces the current pixel-wise model
by a patch-wise model. In this approach, we process a
complete sub-image (patch) in a single step, making pre-
dictions of many pixels simultaneously. This can be car-
ried out by means of neural networks that learns how to
compute an image-to-image prediction.

We evaluate the new approach over a set of high-
resolution images taken from Medieval music manuscripts.
The patch-wise model attains a similar accuracy to that of
the state of the art but reducing the computational cost by
several orders of magnitude.

The rest of the paper is organized as follows. We give a
brief review of related work in Section 2. A formalization
of the task, as well as the proposed solution, is detailed in
Section 3. We empirically demonstrate in Section 4 that
our model drastically reduces the computational time by
orders of magnitude without the classification quality. Fi-
nally, we summarize the main conclusions of the present
work in Section 5, pointing out some potential future work.

2. BACKGROUND

The classical workflow for OMR considers an initial doc-
ument analysis stage [29], to process the input image be-
fore proceeding to the automatic recognition of the content.
This first stage is crucial to increase the robustness of the
system and to reduce the complexity of subsequent stages
by providing correctly segmented images.

A common first step within the document analysis stage
is binarization, in which background and foreground layers
are separated. In addition to typical document image bina-
rization techniques [15,19,30], some music-specific docu-
ment binarization techniques have been proposed [28, 35].
Next, if the lyrics are part of the musical content, they need
to be recognized as well. This is why there have been
some proposals to separate the staves and the text [3, 7].
Once staff sections have been isolated, staff-line removal
may take place. Although staff lines are necessary for mu-
sic interpretation, most OMR workflows are based on de-
tecting and removing the staff lines to perform connected
component analysis on the remaining musical symbols.
A comprehensive review and comparison of the first at-
tempts for staff-line removal can be consulted in Dalitz et
al. [10], and new techniques are being continuously devel-
oped [11, 13, 16]. In addition to these stages, we also find
very specific processes that depend on the specific char-
acteristics of the manuscript of interest, such as measure
isolation [33], page-border removal [26], or frontispiece
detection in Medieval manuscripts [31].

Recently, the full document processing of music score
images has been implemented using CNNs, which learn
to classify each pixel of the image according to its cate-
gory [6]. This approach allows the analysis of entire doc-
uments with a generic method to any type of manuscript
as long as there is appropriate training data. In addition to
these advantages, this approach has proven to outperform
the traditional strategies, and so it can be considered the

state of the art in document analysis of music score im-
ages.

However, this process takes a long time because it has
to perform an independent classification for each pixel of
the image. Since images used are usually at high resolu-
tion involving millions of pixels, the resulting long com-
putational time prevents its use in an interactive machine
learning environment, where the user expects quick re-
sponses from the machine learning process while training
it. Hence, in this work, we propose an image-to-image ap-
proach using neural networks, with the aim of maintaining
the advantages of the state of the art but dramatically re-
ducing the temporal cost.

3. FRAMEWORK

Formally, we define the task of document analysis of mu-
sic score images as the process of assigning a category to
each pixel of the image based on the layer of information to
which it belongs. Specifically, we instantiate the task to the
set of categories {background, note, staff line,
text}. The reasoning behind this set is that it consist of
the layers that lead to a general analysis of the image for
the purpose of OMR, given that: musical notes are essen-
tial to recover the musical information; staff lines are nec-
essary to divide the score into staves, as well as to estimate
the pitch of the notes; text is also key for music interpreta-
tion but its information must be recognized with different
algorithms (i.e., Optical Character Recognition); the rest
of pixels can be considered as background. However, we
show below that the chosen formulation can be extended
to any other type of category set provided that sufficient
labeled data is available.

As mentioned above, the aim of this work is to alleviate
the computational cost involved in a pixel-wise classifica-
tion approach. We address the issue here by using a set of
auto-encoders, which learn an image-to-image mapping.
Within our context, this means that the image can be pro-
cessed in one step at a higher order of efficiency.

Conventional auto-encoders consist of feed-forward
neural networks for which the input and output must be
exactly the same. The network typically consists of two
stages that learn the functions f and g, which are called en-
coder and decoder functions, respectively. Formally speak-
ing, given an input x, the network must minimize a di-
vergence L(x, g(f(x))). An auto-encoder might initially
appear to be pointless because it is trained to learn the
identity function. Nevertheless, the encoder function f is
typically forced to produce a representation with a lower
dimensionality than the input. The encoder function there-
fore provides a meaningful compact representation of the
input, which might be of great interest for feature learning
or dimensionality reduction [37].

In our case, we modify this traditional behavior so that
the model specializes in selecting the pixels that belong to
each of the elements from the category set. This type of
model is referred to as Selectional Auto-Encoder (SAE)
[13]. An SAE is trained to perform a function such that
s : R(w×h) → [0, 1](w×h). In other words, it learns a

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 257



Text

Note

Staff

Background

ENCODING DECODING

COMBINATION

Figure 1. Graphical scheme of the SAE-based 1-vs-all approach for document analysis of music scores images. The outputs
of the individual SAE are represented as grayscale masks in which the white color represents the maximum selectional
value. Coloring for the final combination: background in white, music symbols in black, staff lines in blue, and text in red.

binary map over a w × h image that preserves the input
shape. The predicted value for each pixel indicates its se-
lection level, representing 1 as the maximum. Then, the
network is trained to minimize the divergence between a
binary image in which only the pixels that belong to the
category of interest are activated.

Actually, an SAE represents a two-class categorizer
with one class represented by the value 0 and another rep-
resented by the value 1. To perform a multi-class document
analysis like the one formalized above, we follow a 1-vs-all
strategy, much in the same way as other binary classifiers
such as the Support Vector Machine [20]. That is, we train
a different SAE focused on each category, assuming the
category of interest as 1 and the remaining ones as 0. At
the time of inference, the outputs of all the trained SAEs
are combined to obtain a global analysis of the document.

We find two important advantages of predicting each
layer separately. On the one hand, the extraction of a spe-
cific layer only requires the ground-truth data of the tar-
geted category, thus reducing the effort involved in prepar-
ing the training set if only a subset of the categories is pur-
sued. On the other hand, the predictions provided by each
SAE could be processed separately—e.g., to apply differ-
ent thresholds to each result or to resolve inconsistencies
when many predictions disagree about a specific region—
which might be interesting depending on the way the sub-
sequent stages of the OMR workflow operate.

Below we discuss more details about the actual imple-
mentation of the described framework for the present work.

3.1 Implementation details

An SAE can be configured in many ways. We specifically
consider a Fully-Convolutional Network (FCN) topology,
given the good results obtained by this type of neural net-
works in this task [32], and in general for any image-
related task [23].

An FCN is a type of neural network that is entirely
based on filters (i.e., convolutions). These filters are con-
figured in a hierarchy of layers that provide multiple rep-
resentations from the input image with different levels of
abstraction: while the first layers emphasize details of the
image, the last layers focus on high-level entities [22]. The
parameters of the convolutions are typically optimized by
backpropagation [24] through a training set, with the ob-
jective of generalizing to unseen data.

Consequently, the hierarchy of layers of our SAE con-
sists of a series of convolutional plus pooling layers, until
an intermediate layer is attained. As these layers are ap-
plied, filters are able to relate parts of the image that were
initially far apart. Then, it follows a series of convolu-
tional plus up-sampling layers that reconstruct the image
up to the same input size copying neighboring pixels. The
last layer consists of a set of neurons with sigmoid activa-
tion that predict a value in the range of [0, 1], depending on
the selectional level predicted for the corresponding input
pixel. This selectional level is expected to approach 1 as
the model is more confident that the pixel belongs to the
category of interest. This specific configuration needs to
be tweaked for the problem at issue, and so we will per-
form some preliminary experiments to evaluate different
options.

The training stage consists of providing the SAE with
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Corpus Salzinnes Einsiedeln

Pages 10 10

Avg. height and width

per page (in pixels)
5 100× 3 200 5 550× 3 650

%

Background 80.6 79.1

Note 11.2 10.0

Staff line 4.5 6.9

Text 3.7 4.0

Table 1. Overview of the corpus used in our experiments:
number of pages, average size per page, and class distribu-
tion (in %).

examples of images and their corresponding ground truth,
that is, binary maps over the pixels that belong to the cat-
egory of interest. The cross-entropy loss function between
each output activation and its expected activation is com-
puted. Then, filters are tuned using stochastic gradient de-
scent optimization [2] with a mini-batch size of 16 and the
adaptive learning rate strategy proposed by Zeiler [38].

Once all the corresponding SAEs for the categories
considered in this work (SAEbackground, SAEnote, SAEstaff,
SAEtext) are trained, they can be used to perform the doc-
ument analysis process. In order to compute a single cat-
egory for each pixel, we select the category whose SAE
retrieves the highest selection value. A graphical scheme
of this operation is depicted in Figure 1.

Given that our SAE is configured as a fully-
convolutional model (i.e., without any dense layer), the
input and the output layers can be of an arbitrary size.
In practice, however, processing a high-resolution musi-
cal score has a high memory consumption. This is why in
our case we need to divide the input music score into equal
patches of 256×256 pixels, which was the largest size fea-
sible with our computational resources. Theoretically, this
limitation should not affect the performance of the mod-
els except for the case of the edges of the input patches.
This can be palliated by considering overlap at the time
of splitting the input image, and ignoring the edges of the
predictions made.

4. EXPERIMENTS

4.1 Experimental setup

For the evaluation of our approach, we consider high-
resolution image scans of two ancient music manuscripts.
The first corpus is a subset of 10 pages of the Salzinnes
Antiphonal manuscript (CDM-Hsmu M2149.14), 1 music
score dated 1554–5. The second corpus is 10 pages of the
Einsiedeln, Stiftsbibliothek, Codex 611(89), from 1314. 2

Table 1 gives an overview of this corpora with some of
their specific features. For our experiments, the images
have been considered in their grayscale format.

1 https://cantus.simssa.ca/manuscript/133/
2 http://www.e-codices.unifr.ch/en/sbe/0611/

The ground-truth data was created manually by labeling
pixels into the four categories mentioned above. Although
in this work we circumscribe the experiments to corpora
from Medieval music manuscripts, we believe that their
difficulty and wealth of information (at the image level) al-
lows us to generalize the conclusions to any type of music
score image.

In order to provide a more reliable assessment, we fol-
low a corpus-wise 5-fold cross validation scheme. In each
iteration of each corpus, 2 complete pages—not necessar-
ily consecutive ones—are used for test evaluation, 2 pages
are used as validation, and 6 pages for training the SAE
models. The reported results will represent averages over
these 5 independent evaluation processes. It be should
noted that the experiments in both corpora have been per-
formed individually, since in the context of machine learn-
ing, it could be assumed that the samples belong to the
same domain. Despite this assumption, future research
aims to expand the experimental setup to include more re-
alistic scenario with cross-manuscript experiments.

As can be observed, the distribution of each class is
highly biased, background being the most represented
class. Given this distribution, we consider appropriate met-
rics for such imbalanced datasets. For instance, the F1 typ-
ically represents a fair metric in these scenarios. In a two-
class classification problem, this measure can be computed
as

F1 =
2 · TP

2 · TP + FP + FN
, (1)

where True Positive (TP) stands for the correctly classi-
fied elements of the relevant class, False Positive (FP) rep-
resents the misclassified elements from the relevant class,
and False Negative (FN) stands for the misclassified ele-
ments of non-relevant class.

To compute single values encompassing all possible
categories, this metric can be reformulated into macro F1

[27], which is computed as the average of all class-wise
metrics.

4.2 Network selection

In this section we carry out a preliminary study to evalu-
ate how some of the parameters of the SAE configuration
affect the accuracy of the classification. It is worth men-
tioning that the different configurations may behave dif-
ferently according to the category of interest (background,
text, note, or staff). In this regard, however, we assume
for this study a general assessment taking into account all
classes simultaneously.

There exist a huge number of possibilities for establish-
ing the organization of the neural model [18]. In order to
reduce the search, we restrict ourselves to evaluate only
the most interesting hyper-parameterization, namely the
depth of the encoding/decoding blocks and whether encod-
ing and decoding layer actually perform down-sampling
and up-sampling operators. The latter points to an inter-
esting issue: performing down- and up-sampling opera-
tions allows intermediate filters to focus on different levels
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Down/Up-Sampling

Depth No Yes

1 90.0 90.7

2 91.5 94.9

3 93.3 96.0

4 94.2 95.4

Table 2. Macro average F1 (%) of the 5-fold cross-
validation over the validation partitions, with respect to the
depth of the encoding/decoding layers and whether or not
considering sampling operators.

of abstraction within the image, also reducing the intrin-
sic complexity—since the image in the intermediate lay-
ers would be smaller. However, keeping the original size
throughout the process avoids having to learn to recon-
struct the image, at the cost of losing the benefits discussed
above for the opposite case.

The rest of the parameters are fixed manually, based on
informal testing, as follows: the number of filters per con-
volution are set to 128 and the size of the convolutional
kernels to 5 × 5. Also, all intermediate convolutional fil-
ters use Rectified Linear Unit (ReLU) activations [17].

Table 2 shows the macro average F1 attained by each
different SAE configuration on the validation sets.

Concerning the depth of the encoding/decoding blocks,
a progress towards an upward trend is observed. In the case
of using sampling operations, this trend finds a peak at 3
layers. In the opposite case (i.e., with no sampling), the
improvements are more subtle and the peak is not reached
within the number of layers considered. Due to computa-
tional resources, we were not able to carry out experiments
with more layers, so it is not possible to know when the
peak would be reached.

On the other hand, regardless of the number of layers
chosen, we can observe that there is a clear tendency in
the advantage of doing down- and up-sampling operations,
since the latter case is always better than its analog for the
same depth in the experiments carried out.

According to these results, the final SAE configuration
for all the categories is shown in Table 3.

4.3 Results

In this section we analyze in detail the performance that
was attained using the best SAE configuration of the pre-
vious section in comparison to the pixelwise CNN-based
approach, that currently represents the state of the art in
this task [5]. All experiments have been performed in
similar conditions on a general-purpose computer with the
following technical specifications: Intel(R) Core(TM) i7-
7700HQ CPU @2.8GHz×4, 32GB RAM, GTX1070 GPU
and Linux Mint 18.2 (64 bits) operating system. The code
has been written using Python language (v2.7) and Keras
framework.

Given that the objective of this paper is not only to mea-
sure the accuracy of the new model but also its efficiency,

Table 5 shows a comparison of both aspects in terms of
macro F1 and the approximated time needed to process a
document. Traditionally, the training cost is not taken into
account when evaluating these systems because the pro-
cess is usually performed offline. Note, however, that both
approaches involved a similar training cost in the order of
several hours on Graphical Processing Units.

Accuracy results show a visible difference between the
corpora considered. While results are closer to the opti-
mum in Salzinnes, both approaches seem to find more dif-
ficulties in Einsiedeln. However, this difference is not ob-
vious in a qualitative evaluation, as depicted in Table 4.

It can be observed that the SAE-based strategy gener-
ally obtains a higher F1 than that based on CNNs. Note,
however, that the objective of this experiment is not to
demonstrate that the SAE-based approach outperforms sig-
nificatively the state of the art, but to obtain results that can
be considered similar, which is clearly reported according
to these figures. On the other hand, the computation time
needed to process a complete manuscript page is drasti-
cally lower with the SAE, going from several hours to a
few minutes. This happens because the CNN approach
has to classify each pixel of the image, whereas the SAE
approach can make predictions of many pixels simultane-
ously (in our experiments, 256× 256). Obviously, the net-
work of the latter approach is more complex, but it clearly
compensates with respect to the temporal cost.

Thus, this comparison with the state of the art demon-
strates that the proposed approach allows obtaining a sim-
ilar performance when performing the document analysis,
with a radically lower computational cost, thus making an
important contribution to the field of OMR.

5. CONCLUSIONS

In this paper we have presented a machine-learning strat-
egy for the document analysis of music score images. The
strategy consists in training SAE, configured as convo-
lutional neural networks, that allow to extract the differ-
ent layers of information found in documents through an
image-to-image formulation.

In a preliminary study, we have determined some of
the parameters that lead to a better configuration of the
SAE. In particular, we have evaluated the depth of the en-
coder/decoder layers, as well as the relevance of whether
performing or not down- and up-sampling operations.
Generally, increasing the number of layers is beneficial, to
a certain extent, while sampling operators lead to a much
more effective network.

Although we did not exhaustively test the various pos-
sible network configurations for this first study, we have
shown that the proposed approach can achieve the accu-
racy similar to the state-of-the-art algorithms, and more
importantly, with an efficiency improvement of orders of
magnitude.

Our results represent the first step towards an interac-
tive scenario in which the user and the system can interact
to solve the OMR task. This scenario has already been de-
vised before [34]; however, our approach allows us to be
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Input Encoding Decoding Output

Conv(128,5,5,ReLU) Conv(128,5,5,ReLU)

MaxPool(2,2) UpSamp(2,2)

[0, 255]256×256 Conv(128,5,5,ReLU) Conv(128,5,5,ReLU) [0, 1]256×256

MaxPool(2,2) UpSamp(2,2)

Conv(128,5,5,ReLU) Conv(128,5,5,ReLU)

MaxPool(2,2) UpSamp(2,2)

Conv(1,5,5,Sigmoid)

Table 3. Detailed description of the selected SAE architecture, implemented as a FCN. Conv(f,h,w,a) stands for a convolu-
tion operator of f filters, with h×w pixel kernels with an a activation function; MaxPool(h,w) stands for the max-pooling
operator with a w × h kernel and stride; UpSamp(h,w) denotes an up-sampling operator of h rows and w columns; ReLU
and Sigmoid denote Rectifier Linear Unit and Sigmoid activations, respectively.

Original
Prediction

Result
Background Staff Note Text

Table 4. Qualitative examples of document analysis over selected patches of the corpora (Salzinnes, first row; Einsiedeln,
second row), depicting the original piece of the document along with the individual SAE predictions, and the resulting
analysis. The predictions of the individual SAE are represented as grayscale masks in which the white color represents the
maximum selectional value. Coloring for the final result: background in white, music symbols in black, staff lines in blue,
and text in red.

Strategy
Macro F1 Time per page

Salzinnes Einsiedeln

SAE 95.5 90.3 ∼ 1 minute

CNN 91.3 88.4 ∼ 6 hours

Table 5. Comparison of our SAE-based approach with
the state-of-the-art (CNN) performance taking into account
both accuracy and efficiency of the document analysis pro-
cess.

closer to real practice since the document analysis process-
ing stage no longer implies a bottleneck.

Nevertheless, the costly training process is still an ob-
stacle for this scenario in which models must re-trained
according to user’s corrections. Therefore, addressing this
matter is essential in future work. Among the possible op-
tions, we want to consider the use of pre-trained models
that can be adapted with few new samples and less de-
manding training procedures.

Also, we are especially interested in the aspect of cross-
manuscript adaptation. That is, how to exploit models

specifically trained for a manuscript in other manuscripts
with a different layout organization. In this way, the ini-
tial effort to obtain ground-truth data from the manuscript
at issue can be reduced. We believe that semi-supervised
learning algorithms could be of interest in this case, for
which the models learn to adapt to a new manuscript by
just providing them with new (unlabeled) images. This
can be performed by promoting convolutional filters that
are both useful for the classification task and invariant with
respect to the differences among manuscript types [14].

6. ACKNOWLEDGEMENT

This work was supported by the Spanish Ministerio de
Economı́a, Industria y Competitividad through HispaMus
project (TIN2017-86576-R) and Juan de la Cierva - For-
mación grant (Ref. FJCI-2016-27873), and the Social Sci-
ences and Humanities Research Council of Canada.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 261



7. REFERENCES

[1] D. Bainbridge and T. Bell. The challenge of opti-
cal music recognition. Computers and the Humanities,
35(2):95–121, 2001.

[2] L. Bottou. Large-scale machine learning with stochas-
tic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer, 2010.

[3] J. A. Burgoyne and I. Fujinaga. Lyric extraction and
recognition on digital images of early music sources. In
Proceedings of the 10th International Society for Mu-
sic Information Retrieval Conference, pages 723–728,
2009.

[4] J. A. Burgoyne, L. Pugin, G. Eustace, and I. Fujinaga.
A comparative survey of image binarisation algorithms
for optical recognition on degraded musical sources.
In Proceedings of the 8th International Conference on
Music Information Retrieval, pages 509–512, 2007.

[5] J. Calvo-Zaragoza, F. J. Castellanos, G. Vigliensoni,
and I. Fujinaga. Deep neural networks for document
processing of music score images. Applied Sciences,
8(5):654–674, 2018.

[6] J. Calvo-Zaragoza, G. Vigliensoni, and I. Fujinaga.
One-step detection of background, staff lines, and sym-
bols in medieval music manuscripts with convolutional
neural networks. In Proceedings of the 18th Interna-
tional Society for Music Information Retrieval Confer-
ence, Suzhou, China, pages 724–730, 2017.

[7] V. B. Campos, J. Calvo-Zaragoza, A. H. Toselli, and E.
Vidal. Sheet music statistical layout analysis. In 15th
International Conference on Frontiers in Handwriting
Recognition, Shenzhen, China, pages 313–318, 2016.

[8] L. Chen and C. Raphael. Human-directed optical music
recognition. Electronic Imaging, 2016(17):1–9, 2016.

[9] L. Chen, E. Stolterman, and C. Raphael. Human-
interactive optical music recognition. In ISMIR, pages
647–653, 2016.

[10] C. Dalitz, M. Droettboom, B. Pranzas, and I. Fujinaga.
A comparative study of staff removal algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 30(5):753–766, 2008.

[11] J. Dos Santos Cardoso, A. Capela, A. Rebelo, C.
Guedes, and J. Pinto da Costa. Staff detection with sta-
ble paths. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(6):1134–1139, 2009.

[12] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Clas-
sification. John Wiley & Sons, New York, NY, 2nd edi-
tion, 2001.

[13] A. Gallego and J. Calvo-Zaragoza. Staff-line removal
with selectional auto-encoders. Expert Systems with
Applications, 89:138–48, 2017.

[14] Y. Ganin and V. Lempitsky. Unsupervised domain
adaptation by backpropagation. In International Con-
ference on Machine Learning, pages 1180–1189, 2015.

[15] B. Gatos, I. Pratikakis, and S. J. Perantonis. Adaptive
degraded document image binarization. Pattern Recog-
nition, 39(3):317–327, 2006.
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