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ABSTRACT

Recordings of a cappella music often exhibit significant
pitch drift. This drift may accumulate over time to a to-
tal transposition of several semitones, which renders the
canonical 2-dimensional Dynamic Time Warping (DTW)
useless. We propose Transposition-Aware Dynamic Time
Warping (TA-DTW), an approach that introduces a 3rd
dimension to DTW. Steps in this dimension represent
changes in transposition. Paired with suitable input fea-
tures, TA-DTW computes an optimal alignment path be-
tween a symbolic score and a corresponding audio record-
ing in the presence of pitch drift or arbitrary transpositions.

1. INTRODUCTION

Existing audio-to-score alignment systems based on DTW
are not yet able to handle performances appropriately if
they exhibit significant pitch drift. However, pitch drift
is rather common in a cappella singing and choir per-
formances due to accumulation of intonation inaccuracies
over time.

Absolute pitch, which is the ability to recognize and
produce a given pitch without an external reference, is a
rare ability of about 0.01% of the population [23]. There-
fore, most singers have to rely on a combination of ref-
erencing with previous and simultaneous pitches together
with muscle memory to intonate appropriately. In solo
singing, the accuracy of a good singer has been reported
to range from about 13 cents (standard deviation) [24] to
about 22 cents [27] for very short melodies and intervals.
Expert listeners judge a deviation of 20-25 cents to be
still in tune [27]. The accuracy of note production can
however be influenced adversely by various factors, e.g.
by an unbalanced ratio of the sound pressure level of the
reference sound in relation to the feedback sound of the
singer’s own voice [25]. Also the presence of vibrato, the
absence of common partials between the voices and the
absence of high partials make it more difficult to intonate
correctly [24].

Due to the lack of an absolute reference, these minor de-
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viations can lead to relatively large pitch deviations in the
long run. It is widely reported that choirs have significant
pitch drift, see [1]. Seaton et al. [20] surveyed amateur and
professional choir singers and conductors regarding their
experiences with pitch drift. Nearly half of the participants
report that pitch drift occurs regularly while only 14% re-
port that drift happens rarely or not at all. Nearly 80% of
the participants say that the direction of the drift is usually
downward while almost all other participants say that drift
occurs in either direction similarly often.

However, pitch drift is not just an addition of small in-
accuracies: Howard argues that pitch drift is almost in-
evitable when singing unaccompanied music that modu-
lates from one key to another [12]. This arises mathemat-
ically from the observation that singers use non-tempered
intonation based on the ratios of small integer numbers.
Howard’s measurements provide evidence that singers in
fact use non-tempered intonation and that they consequen-
tially shift their intonation as hypothesized. He even argues
“that conductors who have a desire to correct overall into-
nation drift for its own sake in an a cappella performance
[...] may be misguided” [12] if the piece contains consid-
erable modulation.

This paper contributes a novel method called
Transposition-Aware Dynamic Time Warping (TA-DTW)
aiming at making an alignment between a symbolic score
and a corresponding audio recording. TA-DTW is able to
handle pitch drift (in contrast to a constant transposition),
which makes it particularly useful to synchronize choir
and singing recordings. Furthermore, it may be used as a
drop-in replacement for existing solutions that can handle
“only” fixed transpositions, which are commonly encoun-
tered in transcriptions of a piece for another instrument
and historically informed performance practice.

The structure of this paper as follows: Section 2 de-
scribes the feature design, derived from Harmonic Pitch
Class Profiles. Section 3 introduces TA-DTW as a 3-
dimensional DTW based on the aforementioned features,
followed by an evaluation, conclusions and future work in
Sections 4 and 5. Related work is discussed in comparison
to our approach within the individual sections.

2. ROBUST PITCH CLASS FEATURES IN THE
PRESENCE OF PITCH DRIFT

Audio-to-Score Alignment algorithms that are based on
DTW generally use pitch features such as chroma fea-
tures [13,15] as an intermediate data representation format
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Figure 1. Chromagrams showing logarithmic sine sweeps
from C4 to B4. Left: Canonical CQT chromas. Right:
HPCPs with frame-wise tuning frequency estimation as
used in this paper.

between the symbolic score and corresponding audio data.
Chroma features are 12-dimensional vectors that describe,
to a certain extent, tonality of a specific and usually very
short sequence of music. They are obtained by measur-
ing the relative intensity of each of the 12 pitch classes (C,
C], D, ..., B) of the equal-tempered scale within an anal-
ysis frame. While this undoubtedly reduces the informa-
tional content in relation to tonal characteristics, this very
reduction makes chroma features robust to changes in in-
strumentation and timbre. They still capture melodic and
harmonic characteristics of music and thus provide a useful
abstraction for various tasks within the music information
retrieval research area.

For symbolic scores chroma features can be computed
directly by mapping the pitch of the individual notes to
their corresponding element in the chroma vector [13]. In
case of audio data they are mostly computed using the Fast
Fourier Transform (FFT) or the specialized Constant Q
Transform (CQT) [3]. The latter is especially useful for
western music since it allows for 1-to-1 mapping of filter
bins to MIDI pitches. CQT can be expressed as a filter
bank with fixed center frequencies for all filters, defined
by a given reference pitch. In the presence of pitch drift,
however, this reference pitch and thus the filter center fre-
quencies have to be dynamically adapted to get high selec-
tivity between adjacent semitones. Figure 1 (left) shows
the effect of fixed center frequencies for a continuous sine
sweep: The resulting chromagram appears to be “fuzzy”
with leakage between semitones. For music that is more
complex inaccurate center frequencies can lead to practi-
cally unusable chroma features.

2.1 Tuning Frequency Estimation

One way of dealing with these inaccuracies is the usage
of multiple filter banks with slightly diverging reference
pitch [18] and picking the best fit for each frame. A more
general solution, however, is the use of tuning frequency
estimation. Gnann et al. [8] proposed a real-time estima-
tion algorithm, specifically addressing pitch drift in choir
music. While their method of reducing the quadratic tun-
ing deviation serves the purpose of having an active “pitch
drift warning system” for rehearsals quite well, it does not
allow for a time resolution down to a single analysis frame.

The same problem arises in an approach by Dressler [7]
based on circular statistics: These methods calculate the
tuning frequency iteratively resulting in an initial delay.
Such behavior is unfavorable for DTW algorithms that rely
on greatest feature accuracy possible in each frame. Both
tuning estimation approaches were evaluated by Degani et
al. [6] together with a third option that utilizes Harmonic
Pitch Class Profiles (HPCP) [9, 29] and allows for the cal-
culation of the deviation from reference pitch within a sin-
gle analysis frame [11]. As all three tuning estimation
methods demonstrated similar performance, we will focus
on HPCPs and their superior time resolution.

HPCPs are closely related to chroma features but differ
in one important aspect: They are tuning independent by
definition, so that the reference frequency is not explicitly
defined. The result of HPCP computation is an octave-
independent histogram with 12, 24, 36, or even more bins,
depending on the needed frequency resolution as shown in
Figure 2. For a constant quality spectrum C with N bins
in total and 36 per octave, the value of the k-th bin of a
36-bin HPCP H is calculated by

Hk =

N/36∑
n=0

|Ck+36n| ∀k ∈ [1 : 36]. (1)

In order to estimate the tuning deviation, each HPCP
frame is processed with a peak detection algorithm. Mul-
tiple peaks might be found in such a frame and the global
deviation from an assumed reference pitch can be averaged
over the individual deviations of the peaks.

In this paper we decided to use quadratic interpolation
as described by Smith in [22] with 36-bin HPCPs. How-
ever, we do not look for the peaks explicitly but rather ac-
cumulate the magnitudes of each semitone’s 3 correspond-
ing bins:

mk =
11∑

n=0

H3n+k ∀k ∈ {1, 2, 3}. (2)

We assume thatm2 is the highest of these values, otherwise
we would have shifted the values ofm cyclically by a value
s ∈ {−1, 0, 1}. To be consistent with [22] and increase
readability, we define α = m1, β = m2, and γ = m3.
Next, we fit a parabola to these magnitudes, i.e. through
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Figure 2. Harmonic Pitch Class Profile with 36 bins per
octave for a single analysis frame.
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Figure 3. Parabola that is fitted to the bins’ magnitudes α,
β, and γ.

(−1, α), (0, β), and (1, γ) as shown in Figure 3. (The bins
have been arbitrarily renumbered about the estimated peak
that is represented by the parabola’s vertex.)

Looking at the general formula for a parabola

y(x) = a(x− p)2 + b (3)

we can directly tell the location of the vertex: The center
point p gives us the error offset of our actual pitch in bins,
while the amplitude y(p) = b equals the peak amplitude.
All three magnitudes can be calculated as follows:

α = ap2 + 2ap+ a+ b,

β = ap2 + b,

γ = ap2 − 2ap+ a+ b

(4)

The peak location in (fractional) bins is given by

p =
1

2

α− γ
α− 2β + γ

∈
[
−1

2
,

1

2

]
(5)

and the estimated peak magnitude gets calculated by:

y(p) = β − 1

4
(α− γ)p. (6)

2.2 Feature Computation

Knowing the global tuning deviation p, we can calculate
the estimated peak magnitude for every pitch class (from
its 3 bins) of our HPCP H via Equation 6 with s being the
potential cyclic shifting done after Equation 2 and

α = H3k−2−s

β = H3k−1−s

γ = H3k−s

∀k ∈ [1 : 12]. (7)

This step effectively reduces the 36 bins per octave to 12
bins per octave, which makes the resulting HPCPs compa-
rable to standard chroma features. To decrease differences
in dynamics between the features, each HPCP vector is
normalized to have length 1. We obtain a chromagram as
exemplary shown in Figure 1 (right) by repeating this for
the entire audio recording.

If the estimated tuning is off by approximately −0.5 or
+0.5 bins and the actual tuning of the recording fluctuates,
the resulting features can be off by 1 semitone in either di-
rection. This can be considered a local “unintended trans-
position” and will be handled in the next section.

3. TRANSPOSITION-AWARE DYNAMIC TIME
WARPING

Support for changing transpositions over time is very lim-
ited in current alignment systems. In this context the
term transposition covers intended alterations in pitch, e.g.
“baroque pitch” or simply singing in a different key, as
wells as unintended pitch drift that exceeds the scope of a
semitone. Most alignment systems, such as Antescofo [4]
pass the problem of unknown transpositions on to the user
and force them to adapt their symbolic score accordingly
by themselves. Niedermayer [19] solves this step by com-
puting all possible transpositions and picking the best fit.
This is similar to a work by Müller [16] that determines
the best transpositions for each individual pitch feature,
though the results are not used for audio-to-score align-
ment. All these systems assume that the global tuning does
not change over time and has to be estimated only once at
the beginning, except Arzt [2]: He uses fingerprinting to
determine a musical piece, the current position within that
piece, and its transposition before the actual alignment.
Hence, the system is theoretically able to “recover” from
unforeseen pitch changes after some time but is (for now)
restricted to piano music and does not allow for continuous
alignment in such cases.

We propose an extended version of DTW called
Transposition-Aware Dynamic Time Warping (TA-DTW)
that allows for continuous changes in transposition during
alignment. It shares conceptual ideas with the multidimen-
sional DTW presented in [28] but focuses on special prop-
erties of chroma features and the nature of musical trans-
positions. The remainder of this section presupposes basic
knowledge of the original DTW algorithm. A comprehen-
sive overview can be found in [15].

3.1 Distance Calculation & Transpositions

In order to compute the alignment we need the distances
between the vectors from the score and the audio HPCP
vectors as computed in Section 2. Various metrics have
been used to calculate these distances such as the Eu-
clidean distance (2-norm distance) [13, 15] and Manhat-
tan distance (1-norm distance) [2, 15]. For computational
complexity reasons, however, we opted for the Cosine Dis-
tance 1 which is defined for two nonzero vectors a and b
as

c(a,b) = 1− cos(θ) = 1− a · b
‖a‖2 · ‖b‖2

(8)

and represents the angular distance ranging from 0 (equal
orientation) to 2 (diametrically opposed). Taking into ac-
count that our HPCP features already have the length 1, the
denominator can be reduced to 1 and leaves us with

c(a,b) = 1− a · b = 1−
n∑

i=1

ai · bi. (9)

This operation can be extended to two matrices with the
same number of rows and unit length columns. It results in

1 As the cosine distance does not obey the triangle inequality it is
strictly speaking not a proper distance metric, see [21]. Nevertheless,
it can be used as such in this particular context.

632 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



a matrix that contains distances between all combinations
of column vectors of these matrices (1 denotes the N ×M
matrix of ones):

c(A,B) = 1−ATB (10)

To make use of this in our context we will represent our
sequence of HPCP vectors a1,a2, . . . ,aN from the score
as a matrix 2 :

A =


a1,1 a1,2 . . . a1,N
a2,1 a2,2 . . . a2,N

...
...

. . .
...

a12,1 a12,2 . . . a12,N

 (11)

The same applies to the sequence of HPCP vectors B =
[b1,b2, . . . ,bM ] from the audio recording.

Cyclically shifting the elements of a pitch class vector
by a value t equals transposing by t semitones as pointed
out by Goto [10]. We make use of this property and com-
pute all 11 possible transpositions t ∈ [1 : 11] for the
score HPCP matrix A. Shifting the rows of A can be done
by multiplying the cyclic permutation matrix P ∈ R12×12

with A:

At = (Pt)A ,P =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 (12)

Finally, we calculate all distances for all transpositions by

c(A,B, t) = 1− (At)
TB. (13)

3.2 Accumulated Multidimensional Cost Matrix

Throughout this section we will express the results of
Equation 13 as the cost matrix C ∈ RN×M×12.

With C we can compute the accumulated cost matrix
D ∈ RN×M×12 by means of dynamic programming. Ad-
ditionally to steps in the n×m plane, as performed in
the canonical DTW, steps in the transposition dimension
t need to be considered. Moving a semitone cyclically
downwards and upwards along the t ∈ [0 : 11] axis will
be defined as

t− = (t− 1) mod 12

t+ = (t+ 1) mod 12
(14)

which allows arbitrary transposition changes that may even
exceed one octave. We will restrict the possible transpo-
sition changes between two adjacent analysis windows to
one semitone in order to keep the underlying math concise
in this paper. While this seems reasonable in practice, too,
it is not an inherent restriction of the algorithm. Figure 4
visualizes the resulting valid steps inside the accumulated
cost matrix D for a possible alignment path.

2 Music analysis frameworks such as librosa or madmom already use
such a representation anyway.

t
n

m

Figure 4. Valid steps inside the accumulated multidimen-
sional cost matrix D.

The accumulated multidimensional cost matrix will be
calculated as follows:

Dn,m,t =



∑m
k=1 C1,k,t if n = 1∑n
k=1 Ck,1,t if m = 1

min(steps)+

w(∆t)Cn,m,t

otherwise

(15)

The (recursive) steps for computing D are defined as

steps =



Dn, m−1, t

Dn−1, m, t

Dn−1, m−1, t

Dn, m−1, t−

Dn−1, m, t−

Dn−1, m−1, t−

Dn, m−1, t+

Dn−1, m, t+

Dn−1, m−1, t+



. (16)

Steps along the t-axis alone are not allowed since it is im-
possible to calculate D under these conditions. The factor
w(∆t) is a weighting factor for penalizing relative move-
ments along the t axis. An increased weight has shown
to stabilize the algorithm by reducing accidental transposi-
tion changes for special cases, e.g. monophonic passages,
where regular pitch changes might look equivalent to trans-
positions.

3.3 Backtracking

In order to compute the warping path p we use a backtrack-
ing algorithm. The starting point pL for the recursive com-
putation is the point along the (N,M, t)-axis in D with the
least costs:

T = arg mint (DN,M,t)

pL = (N,M, T ) .
(17)
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Feature Algorithm Drift
Percentage of events with absolute misalignment error

≤0.15s ≤0.20s ≤0.25s ≤0.30s ≤0.40s ≤0.50s ≤1.00s
Chroma DTW 83.46% 87.75% 89.72% 90.87% 92.04% 92.67% 93.99%
HPCP DTW 86.28% 91.09% 93.23% 94.39% 95.75% 96.36% 97.64%
HPCP TA-DTW 86.52% 91.69% 93.96% 95.18% 96.40% 96.92% 97.89%

Chroma DTW X 20.51% 23.00% 24.61% 25.98% 28.35% 30.23% 36.53%
HPCP TA-DTW X 79.89% 88.35% 92.09% 93.97% 95.56% 96.28% 97.31%

Table 1. Results of the audio-to-score alignment evaluation. Best results are emphasized.

Now we move recursively through the accumulated cost
matrix:

p`−1 =



arg min

D1,m−1,t

D1,m−1,t−

D1,m−1,t+

 if n = 1 and m ≥ 2

arg min

Dn−1,1,t

Dn−1,1,t−

Dn−1,1,t+

 if m = 1 and n ≥ 2

arg min(steps) if n,m ≥ 2
(18)

The resulting 3-dimensional warping path can be orthogo-
nally projected onto different planes as shown in Figure 5:

n×m corresponds to the final alignment between the in-
put feature matrices A and B.

m× t gives information about the location of transposi-
tion changes in the audio data in relation to the score.
The “local unintended transpositions” as outlined in
Section 2.2 are clearly visible.

n× t shows accordingly these transposition change posi-
tions in the score.

The transposition changes in the planes n × t and m × t
can be refined by adding the center frequency offsets p as
calculated in Section 2 for each audio HPCP vector. This
allows for computing continuous pitch drift data.

n

n

t

t

m

m

Figure 5. Orthogonal projections of the 3-dimensional
warping path onto the n× t, m× t, and n×m plane.

4. EVALUATION

We evaluated the alignment accuracy of our TA-DTW with
HPCPs in comparison with the canonical DTW and plain
CQT-based chroma features. Due to the lack of datasets
with choral music and corresponding beat-level annota-
tions, we generated the evaluation data from the complete
MusicNet dataset [26]. It consists of almost 1.3 million
note events (that were manually verified by expert anno-
tators) for approximately 34 hours of chamber music per-
formances with various instrumentations. All material is
available in 44.1 kHz sampling rate. Although a cappella
music is not part of the dataset, we considered it meaning-
ful for evaluation due to its substantial scope. Since the
pieces of the dataset present no significant pitch drift, we
extracted all recordings to raw PCM files and introduced
continuously changing random artificial pitch drift.

This was done by loading each of the 330 pieces
into a Digital Audio Workstation (DAW) and generating
100 equidistantly distributed random pitch change mark-
ers along the time axis for each piece. The amount of in-
troduced pitch drift was kept within the range of ±4 semi-
tones and followed brownian motion to introduce corre-
lation with previous markers. Between the markers, the
pitch deviation was linearly interpolated. A randomization
as such is a reasonably realistic simulation according to
the pitch drift model for a cappella music of Mauch et al.
in [14].

Based on the evaluation methodology of Cont et al. in
[5] for audio-to-score alignment, the absolute alignment
errors in seconds for note onsets were calculated. 1024
samples per window and no overlap for the audio data were
used. This equals a feature rate of∼ 43 vectors per second
or a window length of approximately 23ms. The results
are shown in Table 1. We found w(∆t) = 6.5 to be a
suitable penalty factor for changes along the t-axis in D,
see Equation 15.

In the absence of any pitch drift, we found that using
HPCPs showed superior performance in contrast to plain
chroma features, regardless of whether the calculation of
the alignment was done using DTW or our proposed TA-
DTW. This can be explained by slight deviations in tun-
ing frequency of the recordings that are compensated in
the computation of HPCPs. Using them as calculated in
this paper introduces occasional errors in the form of “lo-
cal transpositions” as explained in Section 2.2. Such errors
can be minimized by switching from DTW to TA-DTW,
which further improves the alignment.
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For music with drifting pitch our proposed method
shows comparable results while the “classic” approach
failed for the majority of note onsets. We assumed that the
remaining∼ 30% are based on the limited maximum pitch
drift in our test data, resulting in this amount of data effec-
tively being not or only marginally pitched. This hypoth-
esis was validated by exemplarily computing the align-
ment with plain DTW using audio files that exhibit con-
stant pitch drift >1 semitone. These cases showed results
<1% for all shown time intervals.

The drawbacks of this approach are the increased mem-
ory and computation requirements. TA-DTW requires a
cost matrix of dimension N ×M × 12, which is 12 times
larger compared to the 2-dimensional cost matrix for DTW.
Computing the warping path with TA-DTW involves com-
putingN×M×12×9 path scores. This is 36 times greater
in contrast to M × N × 3 in DTW. We have empirically
verified these numbers. For music recordings with a length
that exceeds several minutes, the algorithm demands well-
equipped hardware in terms of memory.

5. CONCLUSIONS & FUTURE WORK

In this paper we presented a DTW-based method to com-
pute audio-to-score alignment for audio data that suffers
from drift in global pitch throughout the recording. To this
end we explained the computation of suitable pitch fea-
tures that allow for “sharper” distinction between adjacent
notes on the pitch scale. We used these features in con-
junction with a DTW algorithm that we extended to sup-
port static and dynamically changing transpositions. A fi-
nal evaluation proved the robustness and effectiveness of
our approach.

Apart from normalizing our pitch features to have
length 1, we did not process them any further. This en-
sures that they can be used as basis for additional feature
enhancements [17]. Similarly, this applies to our DTW ex-
tension: Since the Transposition-Aware DTW is conceptu-
ally very close to the original DTW algorithm, many vari-
ations and improvements such as varying step size con-
ditions, local weights, or global constraints [15] can be
adapted easily.

Potential on-line variants of TA-DTW could greatly re-
duce the computational complexity by only calculating
cost values for t± 1 for the current audio window.
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