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ABSTRACT

We consider the task of multimodal music mood predic-
tion based on the audio signal and the lyrics of a track. We
reproduce the implementation of traditional feature engi-
neering based approaches and propose a new model based
on deep learning. We compare the performance of both
approaches on a database containing 18,000 tracks with
associated valence and arousal values and show that our
approach outperforms classical models on the arousal de-
tection task, and that both approaches perform equally on
the valence prediction task. We also compare the a poste-
riori fusion with fusion of modalities optimized simultane-
ously with each unimodal model, and observe a significant
improvement of valence prediction. We release part of our
database for comparison purposes.

1. INTRODUCTION

Music Information Retrieval (MIR) has been an ever grow-
ing field of research in recent years, driven by the need to
automatically process massive collections of music tracks,
an important task to, for example, streaming companies.
In particular, automatic music mood detection has been an
active field of research in MIR for the past twenty years.
It consists of automatically determining the emotion felt
when listening to a track. 1 In this work, we focus on
the task of multimodal mood detection based on the audio
signal and the lyrics of the track. We apply deep learn-
ing techniques to the problem and compare our approach
to classical feature engineering-based ones on a database
of 18,000 songs labeled with a continuous arousal/valence
representation. This database is built on the Million Song
Dataset (MSD) [2] and the Deezer catalog. To our knowl-
edge this constitutes one of the biggest datasets for multi-
modal mood detection ever proposed.

1 We use the words emotion and mood interchangeably, as done in the literature
(see [15]).
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1.1 Related work

Music mood studies appeared in the first half of the 20th
century, with the work of Hevner [7]. In this work, the au-
thor defines groups of emotions and studies classical music
works to unveil correlations between emotions and char-
acteristics of the music. A first indication that music and
lyrics should be jointly considered when analyzing musical
mood came from a psychological study exposing indepen-
dent processing of these modalities by the human brain [3].
For the past 15 years, different approaches have been de-
veloped with a wide range of datasets and features. An
important fraction of them was put together by Kim et al.
in [15]. Li and Ogihara [18] used signal processing fea-
tures related to timbre, pitch and rhythm. Tzanetakis et
al. [28] and Peeters [22] also used classical audio features,
such as Mel-Frequency Cepstral Coefficients (MFCCs), as
input to a Support Vector Machine (SVM). Lyrics-based
mood detection was most often based on feature engineer-
ing. For example, Yang and Lee [31] resorted to a psycho-
linguistic lexicon related to emotion. Argamon et al. [1]
extracted stylistic features from text in an author detec-
tion task. Multimodal approaches were also studied sev-
eral times. Laurier et al. [16] compared prediction level
and feature level fusion, referred to as late and early fu-
sion respectively. In [26], Su et al. developed a sentence
level fusion. An important part of the work based on fea-
ture engineering was compiled into more complete studies,
among which the one from Hu and Downie [9] is one of
the most exhaustive, and compares many of the previously
introduced features.

Influenced by advances in deep learning, notably in
speech recognition or machine translation, new models be-
gan to emerge, based on fewer feature engineering. Re-
garding audio-based methods, the Music Information Re-
trieval Evaluation eXchange (MIREX) competition [5] has
monitored the evolution of the state of the art. In this
framework, Lidy et al. [19] have shown the promise of
audio-based deep learning. Recently, Jeon et al. [14] pre-
sented the first multimodal deep learning approach using
a bimodal convolutional recurrent network with a binary
mood representation. However, they neither compared
their work to classical approaches, nor evaluated the ad-
vantage of their mid-level fusion against simple late fusion
of unimodal models. In [12], Huang et al. resorted to deep
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Boltzmann machines to unveil early correlations between
audio and lyrics, but their method was limited by the in-
completeness of their dataset, which made impossible the
use of temporally local layers, e.g. recurrent or convolu-
tional ones. To our knowledge, there is no clear answer
as to whether feature engineering yields better results than
more end-to-end systems for the multimodal task, probably
because of the lack of easily accessible large size datasets.

1.2 Mood representation

A variety of mood representations have been used in the
literature. They either consist of monolabel tagging with
either simple tags (e.g. in [9]), clusters of tags (e.g. in
the MIREX competition) or continuous representation. In
this work, we resort to the latter option. Russell [24] de-
fined a 2-dimensional continuous space of embedding for
emotions. A point in this space represents the valence
(from negative to positive mood) and arousal (from calm
to energetic mood) of an emotion. This representation
was used multiple times in the literature [12, 27, 29], and
presents the advantage of being satisfyingly exhaustive. It
is worth noting that this representation has been validated
by embedding emotions in a 2-dimensional space based on
their co-occurrences in a database [10]. Since we choose
this representation we formulate mood estimation as a 2-
dimensional regression problem based on a track’s lyrics
and/or audio.

1.3 Contributions of this work

We study end-to-end lyrics-based approaches to music
mood detection and compare their performance with clas-
sical lyrics-based methods performance, and give insights
on the performing architectures and networks types. We
show that lyrics-based networks show promising results
both in valence and arousal prediction.

We describe our bimodal deep learning model and eval-
uate the performance of a mid-level fusion, compared to
unimodal approaches and to late fusion of unimodal pre-
dictions. We show that arousal is highly correlated to the
audio source, whereas valence requires both modalities to
be predicted significantly better. We also see that the lat-
ter task can be notably improved by resorting to mid-level
fusion.

Finally, we compare our model to traditional feature en-
gineering methods and show that deep-learning-based ap-
proaches outperform classical models, when it comes to
multimodal arousal detection, and we show that both sys-
tems are equally performing on valence prediction. For
future comparison purposes, we also release part of our
database consisting of valence/arousal labels and corre-
sponding song identifiers.

2. CLASSICAL FEATURE ENGINEERING-BASED
APPROACHES

We compare our model to classical approaches based on
feature engineering. These methods were iteratively deep-
ened over the years: for audio-based models, a succes-

sion of works [18, 22, 28] indicated the top performing
audio features for mood detection tasks ; for lyrics-based
approaches, a series of studies [1, 10, 31] investigated a
wide variety of text-based features. Finally, fusion meth-
ods were also studied multiple times [9, 16, 29]. Hu and
Downie compiled and deepened these works in a series
of papers [8–10], which is the most accomplished feature-
engineering-based approach of the subject. We reimple-
ment this work and compare its performance to ours. This
model consists in the choice of the optimal weighted aver-
age of the predictions of two unimodal models: an SVM
on top of MFCCs, spectral flux, rolloff and centroid, for
audio; and an SVM on top of basic, linguistic and stylistic
features (n-grams, lexicon-based features, etc.) for lyrics.

3. DEEP LEARNING-BASED APPROACH

We first explore unimodal deep learning models and then
combine them into a multimodal network. In each case,
the model simultaneously predicts valence and arousal. In-
puts are subdivided in several segments for training, so that
each input has the same length. Output is the average of the
predictions computed by the model on several segments of
the input. For the bimodal models, subdivision of audio
and lyrics requires synchronization of the modalities.

3.1 Audio only

We use a mel-spectrogram as input, which are 2-
dimensional. We choose a convolutional neural network
(ConvNet) [17], the architecture is shown in Fig. 1 (a). It
is composed of two consecutive 1-dimensional convolution
layers (convolutions along the temporal dimension) with
32 and 16 feature maps of size 8, stride 1, and max pooling
of size 4 and stride 4. We resort to batch normalization [13]
after each convolutional layer. We use two fully connected
layers as output to the network, the intermediate layer be-
ing of size 64.

(a) Audio (b) Lyrics (c) Bimodal

Figure 1. Architecture of unimodal and bimodal models

3.2 Lyrics only

We use a word embedding as input to the network, i.e.
each word is embedded in a continuous space and the vec-
tors corresponding to each word are stacked, the input be-
ing consequently 2-dimensional. We choose to resort to
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Model name Description
CBOW Continuous bag-of-words: random forest on

top of means of input words embedding
GRU Single Gated Recurrent Unit (GRU) [4], size

40, dense layers of size 64 and 2, preceded by
dropout layers of parameter 0.5

LSTM Single Long Short-Term Memory (LSTM) [6],
size 80, dense layers of size 64 and 2, preceded
by dropout layers of parameter 0.5

biLSTM Single LSTM, size 40, dense layers of size 64
and 2, preceded by dropout layers of parameter
0.5

2LSTMs Two LSTM layers, of size 40, dense layers of
size 64 and 2, preceded by dropout layers of
parameter 0.5

ConvNet+LSTM Convolutional layer with 16 features maps of
size (2,2), stride 1, max-pooling of size 2,
stride 2, an LSTM layer of size 40 and dense
layers of size 32 and 2, preceded by dropout
layers of parameter 0.5

2ConvNets+2LSTMs Two convolutional layers with 16 features
maps of size (2,2), stride 1, max-pooling of
size 2, stride 2, two LSTM layers of size 40
and dense layers of size 32 and 2, preceded by
dropout layers of parameter 0.5

Table 1. Description of lyrics-based models.

a word2vec [21] embedding trained on 1.6 million lyrics,
as first results seemed to indicate that this specialized em-
bedding performs better than embedding pretrained on an
unspecialized, albeit bigger, dataset. We compare several
architectures, with recurrent and convolutional layers. One
of them is shown in Fig. 1 (b). We also compare this ap-
proach with a simple continuous bag-of-words method that
acts as a feature-free baseline. The models that were tested
are described in Table 1.

3.3 Fusion

For the fusion model, we reuse the unimodal architecture
from which we remove the fully connected layers and con-
catenate the outputs of each network. On top of this con-
catenation, we use two fully connected layers with an inter-
mediate vector length of size 100. This architecture is pre-
sented in Fig. 1(c). This allows for detection of more com-
plex correlations between modalities. We choose to com-
pare this with a simple late fusion, which is a weighted av-
erage of the outputs of the unimodal models, the weight be-
ing grid-searched. The mid-level fusion model is referred
to as middleDL and the late fusion model as lateDL.

4. EXPERIMENT

4.1 Dataset

The MSD [2] is a large dataset commonly used for MIR
tasks. The tracks are associated with tags from LastFM 2 ,
some of which are related to mood. We apply the proce-
dure described by Hu and Downie in [11] to select the tags
that are akin to a mood description. We then make use of
the dataset published by Warriner et al. [30] which asso-
ciates 14,000 English words with their embedding in Rus-
sell’s valence/arousal space. We use it for embedding pre-

2 http://www.last.fm/

viously selected tags into the valence/arousal space. When
several tags are associated with the same track, we retain
the mean of the embedding values. Finally, we normal-
ize the database by centering and reducing valence and
arousal. It would undoubtedly be more accurate to have
tracks directly labeled with valence/arousal values by hu-
mans, but no database with sufficient volume exists. An
advantage of this procedure is its applicability to differ-
ent mood representations, and thus to different existing
databases.

The raw audio signal and lyrics are not provided in the
MSD. Only features are available, namely MFCCs for
audio, word-counts for lyrics. For this reason, we use a
mapping between the MSD and the Deezer catalog using
the song metadata (song title, artist name, album title) and
have then access to raw audio signals and original lyrics
for a part of the songs. As a result, we collected a dataset
of 18,644 annotated tracks. We note that lyrics and au-
dio are not synchronized. Automatic synchronization be-
ing outside of the scope of this work, we resort to a simple
heuristic for audio-lyrics alignment. It consists of aligning
both modalities proportionally based on their respective
length, i.e. for a certain audio segment, we extract words
from the lyrics that are at the corresponding location rel-
atively to the length of the lyrics. We release the labels,
along with Deezer song identifiers, MSD identifiers, artist
and track name 3 . More data can be retrieved using the
Deezer API 4 . Unfortunately, we cannot release the lyrics
and music, due to rights restrictions.

We train the models on approximately 60% of the
dataset, and validate their parameters with another 20%.
Each model is then tested on the remaining 20%. We re-
fer to these three sets as training, validation and test set,
respectively. We split the dataset randomly, with the con-
straint that songs by the same artist must not appear in two
different sets (since artist and moods may be correlated).

4.2 Implementation details

For audio, we use a mel-spectrogram as input to the net-
work, with 40 mel-filters and 1024 sample-long Hann win-
dow with no overlapping, with a sampling frequency of
44.1kHz, computed with YAAFE [20]. We use data aug-
mentation, that was investigated for audio and proven use-
ful in [25], in order to grow our dataset. First, we decide
to extract 30 second long segments from the original track.
The input of the network is consequently of size 40*1292.
We choose to sample seven extracts per track: we draw
them uniformly from the song. We also use pitch shifting
and lossy encoding, which are transformations with which
emotion is invariant, and get three extra segments per orig-
inal sample. In the end, we get a 28-fold increase in the
size of the training set.

For lyrics, the input word embedding was computed
with gensim’s implementation of word2vec [23] and we
used 100-dimensional vectors. We use data augmentation

3 https://github.com/deezer/deezer_mood_detection_
dataset

4 https://developers.deezer.com/api
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mode model valence arousal

audio
CA 0.118 0.197

ConvNet 0.179 0.235

lyrics

CA 0.140 0.032
CBOW 0.080 0.031
LSTM 0.117 0.027
GRU 0.106 0.017

biLSTM 0.076 0.017
2LSTMs 0.128 0.024

ConvNet+LSTM 0.134 0.026
2ConvNets+2LSTMs 0.127 0.022

bimodal
CA 0.219 0.216

LateDL 0.194 0.235
middleDL 0.219 0.232

Table 2. R2 scores of the different tested approaches.

for lyrics as well by extracting seven 50-word segments
from each track. Consequently, the input of each neural
network is of size 100*50.

4.3 Results

We present the results and compare in particular deep
learning approaches with classical ones. The results are
presented in Tab. 2 and 3. In the latter, CA refers to classi-
cal models (described in Sect. 2).

Unimodal approaches. The results of each unimodal
model are given in Table 2. For lyrics-based ones, we have
tested several models without feature engineering. The
highest performing method, on both validation and test set,
is based on both recurrent and convolutional layers. In the
following, we choose this model as the one to be compared
with classical models.

For both unimodal models, one can see a similar trend
for classical and deep learning approaches: lyrics and au-
dio achieve relatively similar performance on valence de-
tection, whereas audio clearly outperforms lyrics when
it comes to arousal prediction. This is unsurprising, as
arousal is closely related to rhythm and energy, which are
essentially induced by the audio signal. On the contrary,
valence is explained by both lyrics and audio, indicating
that the positivity of an emotion can be conveyed through
the text as well as through the melody, the harmony, the
rhythm, etc. Similar observations were made by Laurier et
al. [16], where angry and calm songs were classified sig-
nificantly better by audio than by lyrics, and happy and
sad songs were equally well-classified by both modalities.
This is consistent with our observations, as happy and sad
emotions can be characterized by high and low valence,
and angry and calm emotions by high and low arousal.

When looking more closely at the results, one can
observe that deep learning approaches are much higher
performing than classical ones when it comes to predic-
tion based on audio. On the contrary, classical lyrics-
based models are higher performing than our deep learning
model, in particular when it comes to valence detection,
which is the most informative task for the study on lyrics
only (as stated above). The reason can be that classical sys-

tems resort to several emotion related lexicons designed by
psychological studies. On the contrary, classical audio fea-
ture engineering for mood detection does not make use of
such external resources curated by experts.

Late fusion analysis. As stated earlier, the late fusion
consists of a simple optimal weighted average between the
prediction of both unimodal models. We resort to a grid-
search on the value of the weighting between 0 and 1. The
result for the reimplementation of traditional approaches
and for our model is presented in Table 3. One can ob-
serve a similar phenomenon for both classical models and
ours. In both cases, the fusion of the modalities does not
significantly improve arousal detection performance com-
pared to audio-based models. It is as predicted, as we saw
that audio-based models perform significantly better than
lyrics-based ones. For deep learning models, using lyrics
in addition to audio in a late fusion scheme leads to no im-
provement, so there is no gain added by using lyrics. When
it comes to valence detection, both modalities are valu-
able: in both approaches, the top performing model is a
relatively balanced average of unimodal predictions. Here
also, these observations generalize to valence/arousal what
was observed on the emotions happy, sad, angry and calm
in [16]. Indeed, based on this study, not only are lyrics
and audio equally performant for predicting happy and sad
songs, but they are also complementary, so that fused mod-
els can achieve notably better accuracies. However, pre-
dicting angry and calm songs is not improved when using
lyrics in addition to audio.

Bimodal approaches comparison. Bimodal method
performances are reported in Table 2. Several interest-
ing remarks can be made based on these results. First
of all, one can notice that if one compares late fusion
for both approaches, arousal detection is outperformed by
deep learning systems, as the corresponding unimodal ap-
proach based on audio is more performant, and we have
seen that lyrics-based arousal detection is in both cases
performing poorly. On the contrary, late fusion for valence
detection yields better results for classical systems. In this
case, the lack of performance of lyrics-based methods re-
lying on deep learning is not compensated for by a slightly
improved audio-based performance.

However, when it comes to mid-level fusion presented
in paragraph 3.3, there is a clear improvement for valence
detection. It seems to indicate that there might be ear-
lier correlations between both modalities, that our model
is able to detect. Concerning arousal detection, the capac-
ity of the network to unveil such correlations seems use-
less: we have seen that our lyrics-based model is not able
to bring additional information to the audio-based model.

This performing fusion, along with more accurately
predicted valence thanks to audio, is sufficient for achiev-
ing similar performance to classical approaches, without
the use of any external data designed by experts. Inter-
estingly, both models remain useful, as long as they learn
complementary information. For valence detection, an op-
timized weighted average of the predictions of both models
yields the performance presented in Table 4. We can see
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coefficient* 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Feature engineering approaches
valence 0.133 0.163 0.186 0.201 0.211 0.211 0.207 0.192 0.174 0.147 0.112
arousal 0.034 0.081 0.121 0.152 0.178 0.199 0.211 0.217 0.218 0.212 0.201

Deep learning approaches
valence 0.118 0.136 0.152 0.165 0.175 0.182 0.186 0.188 0.187 0.183 0.177
arousal 0.025 0.065 0.102 0.135 0.164 0.19 0.212 0.231 0.246 0.257 0.265

Table 3. R2 scores of the late fusion of unimodal models for classical approaches and deep learning approaches, for
different values of weighting. *This coefficient is the weight of the audio prediction. The weight of the lyrics prediction is
its complementary to one.

modalities BWC*
CA and DL

CA DL
mean

audio 0.7 0.193 0.118 0.179
lyrics 0.5 0.177 0.140 0.134
fused 0.5 0.243 0.219 0.219

Table 4. R2 scores of the optimal weighted mean of classi-
cal and deep learning approaches for valence prediction for
different modalities. *BWC: best weighting coefficient.
This coefficient is the optimal weight of the deep learning-
based prediction. CA and DL respectively refers to classi-
cal approaches and deep learning methods.

a significant gain obtained for a balanced average of both
predictions, indicating that both models have different ap-
plications, in particular when it comes to lyrics-based va-
lence detection.

5. CONCLUSION AND FUTURE WORK

We have shown that multimodal mood prediction can go
without feature engineering, as deep learning-based mod-
els achieve better results than classical approaches on
arousal detection, and both methods perform equally on
valence detection. It seems that this gain of performance is
the results of the capacity of our model to unveil and use
mid-level correlations between audio and lyrics, particu-
larly when it comes to predicting valence, as we have seen
that for this task, both modalities are equally important.

The gain of performance obtained when using this fu-
sion instead of late fusion indicates that further work can be
done for understanding correlations between both modal-
ities, and there is no doubt that a database with synchro-
nized lyrics and audio would be of great help to go further.
Future work could also rely on a database with labels indi-
cating the degree of ambiguity of the mood of a track, as
we know that in some cases, there can be significant vari-
ability between listeners. Such databases would be partic-
ularly helpful to go further in understanding musical emo-
tion. Temporally localized label in sufficient volume can
also be of particular interest. Future work could also lever-
age unsupervised pretraining to deep learning models, as
unlabeled data can be easier to find in high volume. We
also leave it as a future work to pursue improvements of
lyrics-based models, with deeper architectures or by op-
timizing word embeddings used as input. Studying and
optimizing in detail ConvNets for music mood detection
offers the opportunity to temporally localize zones respon-
sible for the valence and arousal of a track, which could be

of paramount importance to understand how music, lyrics
and mood are correlated. Finally, by learning from feature
engineering approaches, one could use external resources
designed by psychological studies to improve significantly
the prediction accuracy, as indicated by the complementar-
ity of both approaches.
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